1. What are STP and SATP? Give definitions and appropriate values.

STP – Standard Temperature and Pressure

T = 0°C P = 101.3 kPa

(note – a recent update for notes. Thermodynamic STP is $25 \,^{\circ}$ C and 100 kPa)

SATP – Standard Ambient Temperature and Pressure

T = 25°C P = 101.3 kPa

2. Identify each of the following reactions as **endothermic** or **exothermic**. Also, write each one in an equivalent way.

 $S(g) + 2 Cl(g) \rightarrow SCl_2(g)\Delta H^\circ = -510 kJ$ For example: Answer: Exothermic (ΔH° is negative). The reaction may also be written as: $S(g) + 2 CI(g) \rightarrow SCI_2(g) + 510 kJ$ Notice the sign in front of 510 kJ – when the energy term is included in the equation, it always has a + sign in front. $2 \text{ Hg(I)} + I_2(s) \rightarrow \text{Hg}_2I_2(s)$ $\Delta H^\circ = -28.9 \text{ kcal}$ a. 2 marks each $2 \text{ Hg(I)} + I_2 (s) \rightarrow \text{Hg}_2 I_2 (s) + 28.9 \text{ kcal}$ **Exothermic** b. $N_2(g) + 3 F_2(g) \rightarrow 2 NF_3(g) + 27.2 \text{ kcal}$ $N_2(g) + 3 F_2(g) \rightarrow 2 NF_3(g) \Delta H^\circ = 27.2 \text{ kcal}$ Exothermic $NH_4NO_3(s) + 6.1 \text{ kcal} \rightarrow NH_4^+ (aq) + NO_3^- (aq)$ C. $NH_4NO_3(s) \rightarrow NH_4^+$ (aq) + NO_3^- (aq) $\Delta H^\circ = + 6.1$ kcal Endothermic d. $Na(s) \rightarrow Na(g)$ ∆H° = 25.98 kcal $Na(s) + 25.98 \text{ kcal} \rightarrow Na(g)$ Endothermic

8

2

- 3. Consider the following two potential energy graphs:
 - A. Identify the following graphs as representing **endothermic** or **exothermic** reactions:

EXOTHERMIC

ENDOTHERMIC

B. Which graph above will have a value for ΔH that is *negative*?

GRAPH 1

4. Using a table of thermochemical data, write heats of formation reactions for the following compounds. Include the energy term as part of the equation.

Example:Write the heat of formation reaction for KOH, including the energy term as part of the
equation.Answer: $K + \frac{1}{2} O_2 + \frac{1}{2} H_2 \rightarrow KOH + 428.8 \text{ kJ}$ IMPORTANT:Be sure to memorize the seven diatomic molecules: H_2 , N_2 , O_2 , F_2 , Cl_2 , Br_2 , l_2

a. SO₂(g)

 $S + O_2 \rightarrow SO_2 (g) + 296.8 \text{ kJ}$

2

1

- b. C₃H₈ (g)
- 2
- $3 C + 4 H_2 \rightarrow C_3 H_8 (g) + 103.8 kJ$

c. N₂O (g)

 N_2 + $\frac{1}{2}$ O_2 + 82.1 kJ \rightarrow NO₂(g)

d. Na₂CO₃ (s)

2 Na + C +
$$\frac{3}{2}$$
O₂ \rightarrow Na₂CO₃ + 1130.7 kJ

5. On the basis on energy changes, select the three reactions from the list below that are most likely to occur spontaneously:

2

2

The exothermic reactions are the most likely to be spontaneous – A, D, and F \rightarrow A. $H_2(g) + O_2(g) \rightarrow H_2O(g) + 220.1 \text{ kJ}$ B. $3 \text{ CO}_2(g) + 4 \text{ H}_2O(I) + 2220 \text{ kJ} \rightarrow \text{C}_3\text{H}_8(g) + 5 \text{ O}_2(g)$

C. 2 HCl(g)
$$\rightarrow$$
 H₂(g) + Cl₂(g) Δ H° = +185 kJ

$$\rightarrow$$
 D. CH₄(s) + 2 O₂(g) \rightarrow CO₂(g) + 2 H₂O(l) Δ H° = -890 kJ

2