1. When iron rusts in air, the following reaction occurs:

4 Fe (s) + 3 O₂ (g) \rightarrow 2 Fe₂O₃ (s) Δ H = -1643 kJ

What is the heat of formation of Fe_2O_3 ?

A heat of formation reaction describes the *production* of *one mole* of the compound *from its elements.* In the reaction given above, *two moles* of the compound are formed from the elements. Therefore,

$$\Delta H_{\rm f} = \frac{-1643}{2} = -821.5 \, kJ$$

2. The equation for the decomposition of mercury(II) oxide is as follows:

 $2 \text{ HgO}_{(s)}$ + 182 kJ \rightarrow 2 Hg(l) + O₂ (g)

Determine ΔH_f for HgO_(s)?

The reaction shown in the question is the *reverse* of a formation reaction. As well, it involves *two* moles of the compound HgO, whereas heat of formation is concerned with *one* mole of the compound.

2

2

2

The equation needs to be reversed, which will change the sign of ΔH from +182 kJ to -182 kJ. As well, moles need to be changed to represent *one* mole, not two.

Therefore,
$$\Delta H_f = \frac{-182}{2} = -91 kJ$$

3. Using a table of thermochemical data, calculate ΔH° for the following reactions.

Look up heats of formation from the table of thermochemical data. Multiply by coefficients from the balanced equation. Find the total sum of the reactants, and of the products. Then use the formula

 $\Delta \mathbf{H} = \Sigma \Delta \mathbf{H}_{\text{products}} - \Sigma \Delta \mathbf{H}_{\text{reactants}}$

a. $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ -110.5 + $\frac{1}{2}(0)$ -393.5 -393.5

 $\Delta \mathbf{H} = \Sigma \Delta \mathbf{H}_{\text{products}} - \Sigma \Delta \mathbf{H}_{\text{reactants}}$

b.
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

 $-74.8 + 2(0) -393.5 + 2(-241.8)$
 $-74.8 -877.1$
 $\Delta H = \Sigma \Delta H_{\text{products}} - \Sigma \Delta H_{\text{reactants}}$
 $\Delta H = -877.1 - (-74.8) = -802.3 \text{ kJ}$
c. $CS_2(g) + 2H_2O(l) \rightarrow CO_2(g) + 2H_2S(g)$
 $+ 117.4 + 2(-285.8) -393.5 + 2(-20.6)$

-434.7

2

2

 $\Delta \mathbf{H} = \Sigma \Delta \mathbf{H}_{\text{products}} - \Sigma \Delta \mathbf{H}_{\text{reactants}}$

-454.2

4. Calculate ΔH° for the process:

$$2 \operatorname{AI}(s) + \operatorname{Fe}_2 \operatorname{O}_3(s) \rightarrow \operatorname{AI}_2 \operatorname{O}_3(s) + 2 \operatorname{Fe}(s)$$

Given that ΔH_f° of Fe₂O₃ = -813.0 kJ/mole and ΔH_f° of Al₂O₃ is -1,655.0 kJ/mol

2 Al(s) $Fe_2O_3(s)$ $AI_2O_3(s)$ 2 Fe(s) + \rightarrow + 2 (0) -813.0 -1655.0 2 (0) + +

2

2

 $\Delta \mathbf{H} = \Sigma \Delta \mathbf{H}_{\text{products}} - \Sigma \Delta \mathbf{H}_{\text{reactants}}$

5. The standard heats of formation for CH₄, CHCl₃ and HCl are -74.8, -132, -92.0 kJ/mole, respectively. Use this information to calculate the heat of reaction for the following reaction:

 $CH_4 + 3 CI_2 \rightarrow CHCI_3 + 3 HCI$

CH_4	+	3 Cl ₂	\rightarrow	CHCl ₃	+	3 HCI
- 74.8	+	3 (0)		- 132.0	+	3 (-92.0)
	-74.8				-408.0	

 $\Delta \mathbf{H} = \Sigma \Delta \mathbf{H}_{\text{products}} - \Sigma \Delta \mathbf{H}_{\text{reactants}}$ $\Delta H = -408.0 - (-74.8) = -333.2 \text{ kJ}$ 6. The standard heat of formation, ΔH_f , for C₂H₄ is +52.3 kJ/mol. If C₂H₄ (ethylene) reacts with H₂ to produce C₂H₆ (ethane) according to the following equation:

 $C_2H_4 + H_2 \rightarrow C_2H_6$ $\Delta H = -137 \text{ kJ}$

what is the heat of formation of C_2H_6 ?

(**Hint**: Solve this question without looking up ΔH_f° for C_2H_6 in the Table of Thermochemical Data, although you may want to in order to check your answer. Solve this using the standard formula, $\Delta H_{reaction} = \Sigma \Delta H_{products} - \Sigma \Delta_{reactants}$. However, this time you know $\Delta H_{reaction}$ and need to solve for a substance on the product side of the equation.)

C_2H_4	+	H ₂	\rightarrow	C_2H_6
52.3	+	0		X

 $\Delta \mathbf{H} = \Sigma \Delta \mathbf{H}_{\text{products}} - \Sigma \Delta \mathbf{H}_{\text{reactants}}$

-137 = *x* – 52.3

-137 + 52.3 = x - 52.3 + 52.3

-84.7 kJ = x = ΔH_{C2H6}

7. Using bond enthalpies, calculate ΔH for the following reaction:

 $N_2 + 2 H_2 \rightarrow N_2 H_4$

The structural formulas for all reaction participants are shown here:

You need to refer to the table of bond enthalpies. Determine how many of each type of chemical bond are broken (on the reactant side of the equation) and how many bonds of each type are formed (on the product side of the equation).

Bonds Broken	(energy requ	ired):		
1 N ≡ N	1 × 941	=	941 kJ	
2 H – H	2 × 436	=	872 kJ	
TOTAL			1813 kJ	
Bonds Formed	(energy relea	ased):		
4 N – H	4		4504 41	
	4 × 391	=	1564 kJ	
	4 × 391 1 × 163	=	163 kJ	

The net energy change (heat of reaction) is the difference between how much energy is required to break bonds and how much energy is released when bonds form:

 $\Delta H = \Sigma$ (energy required) - Σ (energy released)

∆H = 1813 – 1727 = <u>+86 kJ</u>

2

2

There is a net requirement of 86 kJ in this endothermic reaction

Note: Solving for ΔH using bond enthalpies will not always agree completely with values from a Table of Thermochemical Data due to difficulties in accurately measuring bond enthalpies.

 The energy from the combustion of hydrazine, N₂H₄, is used to power rockets into space in the reaction:

 $N_2H_4(g) + O_2(g) \rightarrow N_2(g) + 2 H_2O(I)$ $\Delta H^\circ = -627.6 \text{ kJ}$

How many kilograms of hydrazine would be necessary to produce 1.0×10^8 kJ of energy?

Hint: **One mole** of N₂H₄ produces 627.6 kJ of energy. How many moles (and then grams) are required to produce 1.0×10^8 kJ of energy?

Use unit analysis to set up and solve this equation. Since the question concerns mass, you will need to find the molar mass of N_2H_4 as part of the solution:

 $2 N = 2 \times 14.0 = 28.0$ $4 H = 4 \times 1.0 = 4.0$

molar mass of $N_2H_4 = 32.0$ g/mol

$$kg = \frac{1kg}{1,000g} \times \frac{32.0g}{mol} \times \frac{1.0 \times 10^8 \, kJ}{1} \times \frac{1mol}{627.6kJ} = 5.1 \times 10^3 \, kg$$