1. When iron rusts in air, the following reaction occurs:

$$
4 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}=-1643 \mathrm{~kJ}
$$

What is the heat of formation of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
A heat of formation reaction describes the production of one mole of the compound from its elements. In the reaction given above, two moles of the compound are formed from the elements. Therefore,

2

$$
\Delta \mathrm{H}_{\mathrm{f}}=\frac{-1643}{2}=-821.5 \mathrm{~kJ}
$$

2. The equation for the decomposition of mercury(II) oxide is as follows:

$$
2 \mathrm{HgO}_{(s)}+182 \mathrm{~kJ} \rightarrow 2 \mathrm{Hg}_{(l)}+\mathrm{O}_{2(g)}
$$

Determine $\Delta \mathrm{H}_{\mathrm{f}}$ for $\mathrm{HgO}_{(s)}$?
The reaction shown in the question is the reverse of a formation reaction. As well, it involves two moles of the compound HgO , whereas heat of formation is concerned with one mole of the compound.

The equation needs to be reversed, which will change the sign of $\Delta \mathrm{H}$ from +182 kJ to -182 kJ . As well, moles need to be changed to represent one mole, not two.

Therefore, $\Delta \mathrm{H}_{\mathrm{f}}=\frac{-182}{2}=-91 \mathrm{~kJ}$
3. Using a table of thermochemical data, calculate $\Delta \mathrm{H}^{\circ}$ for the following reactions.

Look up heats of formation from the table of thermochemical data. Multiply by coefficients from the balanced equation. Find the total sum of the reactants, and of the products. Then use the formula

$$
\Delta H=\Sigma \Delta H_{\text {products }}-\Sigma \Delta H_{\text {reactants }}
$$

a.	$\mathrm{CO}(\mathrm{g})$	+	$1 / 2 \mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$\mathrm{CO}_{2}(\mathrm{~g})$
	-110.5	+	$1 / 2(0)$		-393.5
	-110.5			-393.5	

$$
\Delta H=\Sigma \Delta H_{\text {products }}-\Sigma \Delta H_{\text {reactants }}
$$

$$
\Delta H=-393.5-(-110.5)=-283 \mathrm{~kJ}
$$

$$
\begin{aligned}
& \Delta \mathrm{H}=\Sigma \Delta \mathrm{H}_{\text {products }}-\Sigma \Delta \mathrm{H}_{\text {reactants }} \\
& \Delta \mathrm{H}=-877.1-(-74.8)=-802.3 \mathrm{~kJ}
\end{aligned}
$$

$\begin{array}{ccccccr}\text { c. } & \mathrm{CS}_{2}(\mathrm{~g}) & + & 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \rightarrow & \mathrm{CO}_{2}(\mathrm{~g}) & + \\ & +117.4 & + & 2(-285.8) & & -393.5 & + \\ & & -454.2\end{array}$
$2 \quad \Delta \mathrm{H}=\Sigma \Delta \mathrm{H}_{\text {products }}-\Sigma \Delta \mathrm{H}_{\text {reactants }}$

$$
\Delta H=\quad-434.7-(-454.2)=+19.5 \mathrm{~kJ}
$$

4. Calculate $\Delta \mathrm{H}^{\circ}$ for the process:

$$
2 \mathrm{Al}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{~s})
$$

Given that $\Delta \mathrm{H}_{f}^{\circ}$ of $\mathrm{Fe}_{2} \mathrm{O}_{3}=-813.0 \mathrm{~kJ} / \mathrm{mole}$ and $\Delta \mathrm{H}_{f}^{\circ}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is $-1,655.0 \mathrm{~kJ} / \mathrm{mol}$

$$
\begin{array}{cccccc}
2 \mathrm{Al}(\mathrm{~s}) & + & \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) & \rightarrow & \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) & + \\
2(0) & + & -813.0 & & -1655.0 & +
\end{array}
$$

$$
\Delta H=\Sigma \Delta H_{\text {products }}-\Sigma \Delta H_{\text {reactants }}
$$

$$
\Delta H=-1655.0-(-813.0)=-842.0 \mathrm{~kJ}
$$

5. The standard heats of formation for $\mathrm{CH}_{4}, \mathrm{CHCl}_{3}$ and HCl are $-74.8,-132,-92.0 \mathrm{~kJ} / \mathrm{mole}$, respectively. Use this information to calculate the heat of reaction for the following reaction:

$$
\mathrm{CH}_{4}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{CHCl}_{3}+3 \mathrm{HCl}
$$

CH_{4}	+	$3 \mathrm{Cl}_{2}$	\rightarrow	CHCl_{3}	+	3 HCl
-74.8	+	$3(0)$		-132.0	+	$3(-92.0)$

$$
\Delta H=\Sigma \Delta H_{\text {products }}-\Sigma \Delta H_{\text {reactants }}
$$

$$
\Delta H=-408.0-(-74.8)=-333.2 \mathrm{~kJ}
$$

6. The standard heat of formation, $\Delta \mathrm{H}_{\mathrm{f}}$, for $\mathrm{C}_{2} \mathrm{H}_{4}$ is $+52.3 \mathrm{~kJ} / \mathrm{mol}$. If $\mathrm{C}_{2} \mathrm{H}_{4}$ (ethylene) reacts with H_{2} to produce $\mathrm{C}_{2} \mathrm{H}_{6}$ (ethane) according to the following equation:

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6} \quad \Delta \mathrm{H}=-137 \mathrm{~kJ}
$$

what is the heat of formation of $\mathrm{C}_{2} \mathrm{H}_{6}$?
(Hint: Solve this question without looking up $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ for $\mathrm{C}_{2} \mathrm{H}_{6}$ in the Table of Thermochemical Data, although you may want to in order to check your answer. Solve this using the standard formula, $\Delta H_{\text {reaction }}=\Sigma \Delta H_{\text {products }}-\Sigma \Delta_{\text {reactants. }}$. However, this time you know $\Delta \mathrm{H}_{\text {reaction }}$ and need to solve for a substance on the product side of the equation.)

```
\(\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \quad \rightarrow \quad \mathrm{C}_{2} \mathrm{H}_{6}\)
\(52.3+\quad 0\)
```

$\Delta H=\Sigma \Delta H_{\text {products }}-\Sigma \Delta H_{\text {reactants }}$
$-137=x-52.3$
$-137+52.3=x-52.3+52.3$
$-84.7 \mathrm{~kJ}=\mathrm{x}=\Delta \mathrm{H}_{\mathrm{C} 2 \mathrm{H} 6}$
7. Using bond enthalpies, calculate ΔH for the following reaction:

$$
\mathrm{N}_{2}+2 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{H}_{4}
$$

The structural formulas for all reaction participants are shown here:

You need to refer to the table of bond enthalpies. Determine how many of each type of chemical bond are broken (on the reactant side of the equation) and how many bonds of each type are formed (on the product side of the equation).

Bonds Broken (energy required):

$\mathbf{1 ~ N ~}=\mathrm{N}$	1×941	$=$	941 kJ
$2 \mathrm{H}-\mathrm{H}$	2×436	$=$	872 kJ
TOTAL			1813 kJ

Bonds Formed (energy released):

$\mathbf{4 N - H}$	4×391	$=$	1564 kJ
$\mathbf{1 ~ N}-\mathbf{N}$	1×163	$=$	163 kJ
TOTAL			1727 kJ

The net energy change (heat of reaction) is the difference between how much energy is required to break bonds and how much energy is released when bonds form:
$\Delta H=\Sigma($ energy required) $-\Sigma($ energy released)
$\Delta \mathrm{H}=1813-1727=\underline{+86 \mathrm{~kJ}}$
There is a net requirement of 86 kJ in this endothermic reaction
Note: Solving for ΔH using bond enthalpies will not always agree completely with values from a Table of Thermochemical Data due to difficulties in accurately measuring bond enthalpies.
8. The energy from the combustion of hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, is used to power rockets into space in the reaction:

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-627.6 \mathrm{~kJ}
$$

How many kilograms of hydrazine would be necessary to produce $1.0 \times 10^{8} \mathrm{~kJ}$ of energy?
Hint: One mole of $\mathrm{N}_{2} \mathrm{H}_{4}$ produces 627.6 kJ of energy. How many moles (and then grams) are required to produce $1.0 \times 10^{8} \mathrm{~kJ}$ of energy?

Use unit analysis to set up and solve this equation. Since the question concerns mass, you will need to find the molar mass of $\mathrm{N}_{2} \mathrm{H}_{4}$ as part of the solution:

$$
\begin{aligned}
& 2 \mathrm{~N}=2 \times 14.0=28.0 \\
& 4 \mathrm{H}=4 \times 1.0=4.0
\end{aligned}
$$

molar mass of $\mathrm{N}_{2} \mathrm{H}_{4}=32.0 \mathrm{~g} / \mathrm{mol}$

$$
\mathrm{kg}=\frac{1 \mathrm{~kg}}{1,000 \mathrm{~g}} \times \frac{32.0 \mathrm{~g}}{\mathrm{~mol}} \times \frac{1.0 \times 10^{8} \mathrm{~kJ}}{1} \times \frac{1 \mathrm{~mol}}{627.6 \mathrm{~kJ}}=5.1 \times 10^{3} \mathrm{~kg}
$$

