Chemistry 30

Unit 1: Energy Changes in Chemical Reactions

21 max

Assignment 4: Section 3-1

1. Predict (<u>do not calculate</u>) whether ΔS will be positive or negative, <u>and explain</u> your answer:

a)
$$6 \text{ CO}_2(g) + 6 \text{ H}_2\text{O}(g) \rightarrow \text{C}_6\text{H}_{12}\text{O}_6(s) + 6 \text{ O}_2(g)$$

Predict a negative △S (entropy is decreasing; system becomes more ordered/less random)

Provide at least one explanation

- 1. gases and liquids produce a solid
- 2. 12 moles produces 7 moles fewer moles is a more ordered state

6 b)
$$PCl_3(\ell) + Cl_2(g) \rightarrow PCl_5(s)$$

Predict −∆S (entropy decreases; the system becomes more ordered / less random)

Provide at least one explanation:

- 1. 2 moles on the reactant side produce 1 mole; fewer moles is a more ordered state
- 2. a liquid and gas produce a more ordered (less random) solid

(2 marks each)

c)
$$H_2O(g) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$$

Predict $+\Delta S$ (entropy increases; the system becomes more random / less ordered)

Provide at least one explanation:

- 1. 1 moles produces 1½ moles (not much difference)
- 2. this is a decomposition reaction, generally producing a more random product
- 2. Calculate ΔS using values from the *Thermochemical Data* handout.

a)
$$4 \text{ Fe}(s) + 3 O_{2(g)} \rightarrow 2 \text{ Fe}_{2}O_{3(s)}$$

$$\Delta S = \Sigma \Delta S_{products} - \Sigma \Delta S_{reactants}$$

a.
$$4\text{Fe (s)} + 3 O_2 (g) \rightarrow 2 \text{Fe}_2 O_3 (s)$$

 $4(27.8) + 3 (205.1) \qquad 2(87.4)$
 $111.2 + 615.3 \qquad 174.8$

$$\Delta S = \Sigma \Delta S_{\text{products}} - \Sigma \Delta S_{\text{reactants}}$$

$$\Delta S = 174.8 - (726.5) = -551.7 \text{ J/K·mol}$$

3

Unit I: Energy Entropy 1

b)
$$C_2H_{4(g)} + 3 O_{2(g)} \rightarrow 2 CO_{2(g)} + 2 H_2O(g)$$

$$\Delta S = \Sigma \Delta S_{products} - \Sigma \Delta S_{reactants}$$

$$\Delta S = 567.2 - (834.0) = -267.7 \text{ J/K} \cdot \text{mol}$$

c)
$$H_{2(g)} + Br_{2(g)} \rightarrow 2 HBr_{(g)}$$

$$ΔS = ΣΔSproducts - ΣΔSreactants$$

$$\Delta S = 397.4 - (282.3) = 115.1 J/K \cdot mol$$

d)
$$Na(s) + \frac{1}{2}CI_{2(g)} \rightarrow NaCI(s)$$

Na (s) +
$$\frac{1}{2}$$
 Cl_{2(g)} \rightarrow NaCl_(s)
57.2 + $\frac{1}{2}$ (223.1)
162.75 72.1

 $\Delta S = \Sigma \Delta S_{products} - \Sigma \Delta S_{reactants}$

$$\Delta S = 72.1 - (162.8) = -90.7 \text{ J/K} \cdot \text{mol}$$

e)
$$C_2H_{6(g)}$$
 + $\frac{7}{2}$ $O_{2(g)}$ \rightarrow 2 $CO_{2(g)}$ + 3 H_2O $\langle \ell \rangle$

$$\Delta S = \Sigma \Delta S_{\text{products}} - \Sigma \Delta S_{\text{reactants}}$$

$$\Delta S = \Sigma \Delta S_{products} - \Sigma \Delta S_{reactants}$$

$$\Delta S = 637.6 - (947.5) = -310.4 \text{ J/K} \cdot \text{mol}$$

3

3

3

3