Name:	
-------	--

Chemistry 30

Unit 1: Energy Changes in Chemical Reactions

29 max

Assignment 5: Sections 3-2 to 3-3

1. For each of the following pairs, circle the situation which favors a spontaneous reaction:

5

a)	endothermic reaction	or	exothermic reaction
b)	negative value of ΔH°	or	positive value of ΔH°
c)	negative value of ΔS°	or	positive value of ΔS°
d) <	increasing entropy	or	decreasing entropy
e)	positive value of ΔG°	or	negative value of ΔG°

2. Describe the circumstances where:

a) $\Delta H_f^{\circ} = 0$ (TYPO with QUESTION) Pure elements

4

- b) S = 0 pure crystals at absolute zero
- c) $\Delta G_f^{\circ} = 0$ pure elements
- d) $\Delta G = 0$ the reaction is at equilibrium

3. Which one of the following shows and increase in entropy:

- (a) dissolving sugar in a cup of hot tea.
 - b) arranging a pack of playing cards into suits.
 - c) building a sand castle on the beach.

1

Name:	
-------	--

4. Using values of ΔG_f° from the table provided below, calculate ΔG° for the following reaction **and** tell whether or not the reaction will occur spontaneously. Show your work clearly. Use the formula $\Delta G = \Sigma \Delta G_{products}$ - $\Sigma \Delta G_{reactants}$

 $C_2\mathsf{H}_{6(g)} + 2\mathsf{CI}_{2(g)} \to C_2\mathsf{H}_4\mathsf{CI}_{2(g)} + 2\;\mathsf{HCI}_{(g)}$

Substance	ΔG_f° (kJ/mol)
$C_2H_{6(g)}$	-32.9
Cl ₂ (g)	0.0
$C_2H_4CI_{2(g)}$	-80.3
HCI(g)	-95.2

Is the reaction spontaneous?

3

$$\Delta G = \Sigma \Delta G_{\text{products}} - \Sigma \Delta G_{\text{reactants}}$$

$$\Delta G = -270.7 - (-32.0) = -237.8 \text{ kJ}$$

1

Because G is negative we know the reaction will be spontaneous

5. Calculate ΔG° using the formula

$$\Delta G = \Delta H - T \Delta S$$

Also, for each question, tell whether or not the reaction will be spontaneous.

Values for ΔH and ΔS are given. All reactions take place at 25°C (298 K). Remember to convert ΔS values to kJ.

a) $CH_3OH(g) + 1\frac{1}{2}O_{2}(g) \rightarrow CO_{2}(g) + 2H_2O(g)$

$$\Delta H = -638.4 \text{ kJ}$$

$$\Delta S = 156.9 \, J / K$$

4

$$\Delta G = \Delta H - T \Delta S$$

$$= -638.4 - (298)(0.1569)$$

$$= -638.4 - 46.7562$$

$$= -685.2 \text{ kJ}$$

The reaction will be spontaneous

Name:

b)
$$2 \text{ NO}_{2(g)} \rightarrow \text{N}_2\text{O}_{4(g)}$$

$$\Delta H = -57.2 \text{ kJ}$$

= -4.78 kJ

$$\Delta S = -175.9 \, J / K$$

4

The reaction will be spontaneous

-2030.8

6. Calculate ΔG° for the following reaction using values of $\Delta G_{f^{\circ}}$ obtained from the Table of Thermochemical Data. Will the reaction be spontaneous?

Use the formula $\Delta G = \Sigma \Delta G_{products} - \Sigma \Delta G_{reactants}$

$$\Delta \mathbf{G} = \Sigma \Delta \mathbf{G}_{products} - \Sigma \Delta \mathbf{G}_{reactants}$$

-2226.6

3

$$\Delta G = -2030.8 - (-2226.6) = +195.8 \text{ kJ}$$

Because G is positive we know the reaction will NOT be spontaneous

7. For a certain spontaneous reaction, the change in enthalpy (ΔH°) is -92.0 kJ and $\Delta G^{\circ} = -50.2$ kJ at 25°C. Calculate ΔS .

$$\Delta G = \Delta H - T \Delta S$$

3

$$-50.2 = -92.0 - (298)(\Delta S)$$

41.8 = -298 ΔS

∆S = -0.1403 kJ/K·mol