Chemistry 30 Unit 1: Energy Changes in Chemical Reactions Assignment 3: Sections 2-4 to 2-7

1. When iron rusts in air, the following reaction occurs:

4 Fe (s) + 3 O₂ (g) \rightarrow 2 Fe₂O₃ (s) Δ H = -1643 kJ

What is the heat of formation of Fe₂O₃?

(hint: what is the heat of formation reaction for Fe_2O_3 ? How does this reaction compare to the reaction given in the question?)

2. The equation for the decomposition of mercury(II) oxide is as follows:

 $2 \text{ HgO}_{(s)} + 182 \text{ kJ} \rightarrow 2 \text{ Hg}_{(l)} + \text{O}_{2 \text{ (g)}}$

Determine ΔH_f for HgO(s)?

(hint: What does ΔH_f mean? What would be the overall equation associated with ΔH_f ?)

- 3. Using a table of thermochemical data, calculate ΔH° for the following reactions. Show your work.
 - a. CO (g) $+ \frac{1}{2}O_2(g) \rightarrow CO_2(g)$

b.
$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$

c.
$$CS_2(g) + 2 H_2O(I) \rightarrow CO_2(g) + 2 H_2S(g)$$

4. Calculate ΔH° for the process:

 $2 \operatorname{Al}(s) + \operatorname{Fe}_2 O_3(s) \rightarrow \operatorname{Al}_2 O_3(s) + 2 \operatorname{Fe}(s)$

Given that ΔH_f° of Fe₂O₃ = -813.0 kJ/mole and ΔH_f° of Al₂O₃ is -1,655.0 kJ/mol

5. The standard heats of formation for CH₄, CHCl₃ and HCl are -74.8, -132, -92.0 kJ/mole, respectively. Use this information to calculate the heat of reaction for the following reaction:

 $CH_4 + 3 Cl_2 \rightarrow CHCl_3 + 3 HCl$

6. The standard heat of formation, ΔH_f , for C₂H₄ is +52.3 kJ/mol. If C₂H₄ (ethylene) reacts with H₂ to produce C₂H₆ (ethane) according to the following equation:

 $C_2H_4 + H_2 \rightarrow C_2H_6 \quad \Delta H = -137 \ kJ$

what is the heat of formation of C_2H_6 ?

(**Hint**: Solve this question without looking up ΔH_f° for C_2H_6 in the Table of Thermochemical Data, although you may want to in order to check your answer. Solve this using the standard formula, $\Delta H_{reaction} = \Sigma \Delta H_{products} - \Sigma \Delta_{reactants}$. However, this time you know $\Delta H_{reaction}$ and need to solve for a substance on the product side of the equation.)

7. Using bond enthalpies, calculate ΔH for the following reaction:

$$N_2 + 2 \ H_2 \rightarrow N_2 H_4$$

The structural formulas for all reaction participants are shown here:

 $N \equiv N + 2 H - H \rightarrow H - N - N H$

8. The energy from the combustion of hydrazine, N_2H_4 , is used to power rockets into space in the reaction:

 N_2H_4 (g) + O_2 (g) $\rightarrow N_2$ (g) + 2 H_2O (l) ΔH° = -627.6 kJ

How many kilograms of hydrazine would be necessary to produce 1.0×10^8 kJ of energy?

Hint: **One mole** of N₂H₄ produces 627.6 kJ of energy. How many moles (and then grams) are required to produce 1.0×10^8 kJ of energy?