
- 1. For each of the following pairs, circle the situation which favors a spontaneous reaction:
 - a) endothermic reaction or exothermic reaction
 - b) negative value of ΔH° or positive value of ΔH°
 - c) negative value of ΔS° or positive value of ΔS°
 - d) increasing entropy or decreasing entropy
 - e) positive value of ΔG° or negative value of ΔG°
- 2. Describe the circumstances where:

- 3. Which one of the following shows and increase in entropy:
 - a) dissolving sugar in a cup of hot tea.
 - b) arranging a pack of playing cards into suits.
 - c) building a sand castle on the beach.

4. Using values of ΔG_f° from the table provided below, calculate ΔG° for the following reaction **and** tell whether or not the reaction will occur spontaneously. Show your work clearly. Use the formula $\Delta G = \Sigma \Delta G_{\text{products}} - \Sigma \Delta G_{\text{reactants}}$

Substance	∆G _f ° (kJ/mol)
$C_2H_{6(g)}$	-32.9
$CI_{2(g)}$	0.0
$C_2H_4CI_{2(g)}$	-80.3
HCI(g)	-95.2

 $C_2H_{6(g)} + 2CI_{2(g)} \rightarrow C_2H_4CI_{2(g)} + 2 \text{ HCI}_{(g)}$

Is the reaction spontaneous?

5. Calculate ΔG° using the formula $\Delta G = \Delta H - T\Delta S$

Also, for each question, tell whether or not the reaction will be spontaneous.

Values for ΔH and ΔS are given. All reactions take place at 25°C (298 K). Remember to convert ΔS values to kJ.

a) $CH_3OH_{(l)} + 1\frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$

$$\Delta H = -638.4 \text{ kJ}$$
 $\Delta S = 156.9 \text{ J / K}$

b) 2 NO_{2(g)} \rightarrow N₂O_{4(g)}

 $\Delta H = -57.2 \text{ kJ}$ $\Delta S = -175.9 \text{ J / K}$

6. Calculate ΔG° for the following reaction using values of $\Delta G_{f^{\circ}}$ obtained from the Table of Thermochemical Data. Will the reaction be spontaneous?

Use the formula $\Delta G = \Sigma \Delta G_{\text{products}} - \Sigma \Delta G_{\text{reactants}}$

 $3 \text{ Fe}_2 \text{O}_{3(s)} \rightarrow 2 \text{ Fe}_3 \text{O}_{4(s)} + \frac{1}{2} \text{ O}_{2(g)}$

7. For a certain spontaneous reaction, the change in enthalpy (ΔH°) is -92.0 kJ and ΔG° = -50.2 kJ at 25°C. Calculate ΔS .