Practice Questions Section 2.5 Hess's Law Equation

1. The standard heats of formation of HCl $_{(g)}$ and HBr $_{(g)}$ are -92.0 kJ/mol and -36.4 kJ/mol respectively. Using this information, calculate ΔH° for the following reaction:

 $\operatorname{Cl}_{2\,(g)}$ + 2 HBr $_{(g)}$ \rightarrow 2 HCl $_{(g)}$ + Br $_{2\,(g)}$

Practice Questions Section 2.5 Hess's Law Equation

1. The standard heats of formation of HCl $_{(g)}$ and HBr $_{(g)}$ are -92.0 kJ/mol and -36.4 kJ/mol respectively. Using this information, calculate ΔH° for the following reaction:

 $Cl_{2\,(g)} + 2 \ HBr_{(g)} \rightarrow 2 \ HCl_{(g)} + Br_{2\,(g)}$

Solution:

Solve for ΔH° using $\Delta H_{reaction} = \Sigma \Delta H_{products} - \Sigma \Delta H_{reactants}$

It is helpful to write ΔH_f values directly below the reaction participants, and find the sum of the reaction and product sides of the equation before using that formula:

Cl_2	+	2 HBr	\rightarrow	2 HCl	+	Br ₂
0	+	2 × (-36.4)		$2 \times (-92.0)$	+	0
-72.8			-184.0			

 $\Delta H_{reaction} = \Sigma \Delta H_{products} - \Sigma \Delta H_{reactants}$

= -111.2 kJ Answer

Answers