Practice Questions Section 3.3

Gibbs Free Energy

1. Calculate $\Delta \mathrm{G}$ at $25^{\circ} \mathrm{C}$ for the following reaction, by first calculating $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$. Once you've found $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$, solve for $\Delta \mathrm{G}$ using the formula:

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}
$$

Also - will this reaction be spontaneous at this temperature?

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{l})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

2. Again find $\Delta \mathrm{G}$ at $25^{\circ} \mathrm{C}$ for the reaction

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{l})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

This time using the Table of Thermochemical Data and the formula: $\Delta \mathrm{G}=\Sigma \Delta \mathrm{G}^{\circ}{ }_{\text {products }}-\Sigma \Delta \mathrm{G}^{\circ}{ }_{\text {reactants }}$
3. For the reaction $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{2(\mathrm{~s})}$
$\Delta \mathrm{G}^{\circ}=-31.3 \mathrm{~kJ}$. Calculate the standard free energy of formation of the ferric oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, if $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}$ of $\mathrm{CO}=-137 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}$ of $\mathrm{CO}_{2}=-394 \mathrm{~kJ} / \mathrm{mol}$.

Gibbs Free Energy

Answers

1. Calculate $\Delta \mathrm{G}$ at $25^{\circ} \mathrm{C}$ for the following reaction, by first calculating $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$. Once you've found $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$, solve for $\Delta \mathrm{G}$ using the formula:

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}
$$

Also - will this reaction be spontaneous at this temperature?

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{l})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Solution:

Step 1 - Calculate $\mathbf{\Delta H}$

Step 2- Calculate $\Delta \mathbf{S}$

	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{l})}$	+	$2 \mathrm{O}_{2(\mathrm{~g})}$	\rightarrow	$2 \mathrm{CO}_{2(\mathrm{~g})}$	+	$2 \mathrm{H}_{2} \mathrm{O}$ (g)
	159.8	+	2×205.1		2×213.7	+	2×188.8
570.0						805.0	
$\Delta \mathrm{S}$	$=\Sigma \Delta \mathrm{S}^{\circ}{ }_{\text {products }}-\Sigma \Delta \mathrm{S}^{\circ}{ }_{\text {reactants }}$						
	$=805.0-(570.0)$						
	$=235.0 \mathrm{~J} / \mathrm{K}=0.235 \mathrm{~kJ} / \mathrm{K}$				Convert	kJ /	or calculat

Step 3 - Calculate $\Delta \mathrm{G}$ Be sure to convert $25^{\circ} \mathrm{C}$ into K and $\Delta \mathrm{S}$ into kJ / K

$$
\begin{aligned}
\mathrm{K} & =\mathrm{C}+273 \\
& =25+273 \\
& =298 \mathrm{~K} \\
\Delta \mathrm{G} & =\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
& =-786.1-(298.0 \times 0.235) \\
& =-856.1 \mathrm{~kJ} \quad \text { answer }
\end{aligned}
$$

Because $\Delta \mathbf{G}$ is negative, the reaction is spontaneous at this temperature.
2. Again find $\Delta \mathrm{G}$ at $25^{\circ} \mathrm{C}$ for the reaction

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{l})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

This time using the Table of Thermochemical Data and the formula: $\Delta \mathrm{G}=\Sigma \Delta \mathrm{G}^{\circ}{ }_{\text {products }}-\Sigma \Delta \mathrm{G}^{\circ}{ }_{\text {reactants }}$

Solution:

Look up $\Delta \mathrm{G}$ values for all reaction participants. Multiply by coefficients from the balanced equation. Find totals for the reactant and product sides of the equation:

$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{\text {(1) }}$	+	$2 \mathrm{O}_{2(\mathrm{~g})}$	\rightarrow	$2 \mathrm{CO}_{2 \text { (g) }}$	$+$	$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
-389.9	+	2×0		$2 \times(-394.4)$	$+$	$2 \times(-228.6)$
-389.9			-1246.0			

$\Delta \mathrm{G} \quad=\Sigma \Delta \mathrm{G}_{\text {products }}^{\circ}-\Sigma \Delta \mathrm{G}^{\circ}{ }_{\text {reactants }}$

$$
=-1246.0-(-389.9)
$$

$\Delta \mathrm{G}=-856.1 \mathrm{~kJ} \quad$ answer
3. For the reaction $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{2(\mathrm{~s})}$
$\Delta \mathrm{G}^{\circ}=-31.3 \mathrm{~kJ}$. Calculate the standard free energy of formation of the ferric oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$,
if $\Delta \mathrm{G}_{\mathrm{f}}^{\circ}$ of $\mathrm{CO}=-137 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}$ of $\mathrm{CO}_{2}=-394 \mathrm{~kJ} / \mathrm{mol}$.

Solution:

This time we are given the value $\Delta \mathrm{G}^{\circ}$ for the entire reaction, and need to find $\Delta \mathrm{G}_{\mathrm{f}}{ }_{\mathrm{f}}$ for one of the reaction participants, $\mathrm{Fe}_{2} \mathrm{O}_{3}$. Let's let that unknown equal x : (Yes, you could look up the answer in the Table of Thermochemical Data, but let's use that to check our answer at the end)

$\mathrm{Fe}_{2} \mathrm{O}_{3}$	+	3 CO	\rightarrow	2 Fe	+	$3 \mathrm{CO}_{2}$
x	+	$3 \times(-137)$		2×0	+	$3 \times(-394)$
-411			-1182			

Next, set up our formula for $\Delta \mathrm{G}^{\circ}$ and substitute in the values we know, then solve for x :

$$
\begin{gathered}
\Delta \mathrm{G}=\Sigma \Delta \mathrm{G}_{\text {products }}^{\circ}-\Sigma \Delta \mathrm{G}_{\text {reactants }}^{\circ} \\
-31.3=(-1182)-(x-411) \\
-31.3=-1182-x+411 \\
-31.3=-771-x \\
x=-771+31.3=-740
\end{gathered}
$$

$$
\text { Answer - } \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \text { for } \mathrm{Fe}_{2} \mathrm{O}_{3}=-740 \mathrm{~kJ} / \mathrm{mol}
$$

