Practice Questions Section 3.3 Gibbs Free Energy

1. Calculate ΔG at 25°C for the following reaction, by first calculating ΔH and ΔS . Once you've found ΔH and ΔS , solve for ΔG using the formula:

 $\Delta G = \Delta H - T \Delta S$

Also - will this reaction be spontaneous at this temperature?

 $CH_3CO_2H_{(1)} + 2 O_{2(g)} \rightarrow 2 CO_{2(g)} + 2 H_2O_{(g)}$

2. Again find ΔG at 25°C for the reaction

 $CH_3CO_2H_{(l)} + 2 O_{2(g)} \rightarrow 2 CO_{2(g)} + 2 H_2O_{(g)}$

This time using the Table of Thermochemical Data and the formula: $\Delta G = \Sigma \Delta G^{\circ}_{\text{products}} - \Sigma \Delta G^{\circ}_{\text{reactants}}$

3. For the reaction $\operatorname{Fe_2O_3}_{(s)}$ + 3 CO $_{(g)}$ \rightarrow 2 Fe $_{(s)}$ + 3 CO $_{2(s)}$

 $\Delta G^{\circ} = -31.3 \text{ kJ.}$ Calculate the standard free energy of formation of the ferric oxide, Fe₂O₃, if ΔG°_{f} of CO = -137 kJ/mol and ΔG°_{f} of CO₂ = -394 kJ/mol.

Practice Questions Section 3.3 Gibbs Free Energy

1. Calculate ΔG at 25°C for the following reaction, by first calculating ΔH and ΔS . Once you've found ΔH and ΔS , solve for ΔG using the formula:

 $\Delta G = \Delta H - T \Delta S$

Also - will this reaction be spontaneous at this temperature?

$$CH_3CO_2H_{(l)} + 2 O_{2(g)} \rightarrow 2 CO_{2(g)} + 2 H_2O_{(g)}$$

Solution:

Step 1 - Calculate ΔH

$$\begin{array}{cccc} CH_{3}CO_{2}H_{(l)} & + & 2 O_{2(g)} & \rightarrow & 2 CO_{2(g)} & + & 2 H_{2}O_{(g)} \\ \hline & -484.5 & + & 2 \times 0 & & 2 \times (-393.5) & + & 2 \times (-241.8) \\ \hline & -484.5 & & -1270.6 \end{array}$$

$$\Delta H = \Sigma \Delta H^{\circ}_{\text{ products}} - \Sigma \Delta H^{\circ}_{\text{ reactants}}$$
$$= -1270.6 - (-484.5)$$
$$= -786.1 \text{ kJ} \qquad \text{Answer}$$

Step 2- Calculate ΔS

= 235.0 J/K = 0.235 kJ/K				Convert t	o kJ / K	for calculating	gΔG	
	= 805.0 -	- (570).0)					
$\Delta S = \Sigma \Delta S^{\circ}_{\text{products}} - \Sigma \Delta S^{\circ}_{\text{reactants}}$								
570.0						805.0		
	159.8	+	2 × 205.1		2 × 213.7	+	2 × 188.8	
С	H ₃ CO ₂ H (1)	+	$2 O_{2 (g)}$	\rightarrow	$2 \operatorname{CO}_{2(g)}$	+	$2 \ H_2O_{(g)}$	

Step 3 - Calculate ΔG Be sure to convert 25°C into K and ΔS into kJ/K

	= -856.1 kJ answer
	$= -786.1 - (298.0 \times 0.235)$
ΔG	$= \Delta H - T \Delta S$
ĸ	= C + 273 = 25 + 273 = 298 K
V	$-C \pm 272$

Because ΔG is negative, the reaction is spontaneous at this temperature.

Answers

2. Again find ΔG at 25°C for the reaction

$$CH_3CO_2H_{(l)} + 2 O_{2(g)} \rightarrow 2 CO_{2(g)} + 2 H_2O_{(g)}$$

This time using the Table of Thermochemical Data and the formula: $\Delta G = \Sigma \Delta G^{\circ}_{\text{products}} - \Sigma \Delta G^{\circ}_{\text{reactants}}$

Solution:

Look up ΔG values for all reaction participants. Multiply by coefficients from the balanced equation. Find totals for the reactant and product sides of the equation:

CH ₃ CO ₂ H (l)	+	$2 O_{2 (g)}$	\rightarrow	$2 \operatorname{CO}_{2(g)}$	+	$2 \ \mathrm{H_2O}_{(g)}$	
-389.9	+	2×0		$2 \times (-394.4)$	+	2 × (-228.6)	
-389.9				-1246.0			

$$\Delta G = \Sigma \Delta G^{\circ}_{\text{products}} - \Sigma \Delta G^{\circ}_{\text{reactants}}$$
$$= -1246.0 - (-389.9)$$

 $\Delta G = -856.1 \text{ kJ}$ answer

3. For the reaction $\operatorname{Fe_2O_3}_{(s)}$ + 3 CO $_{(g)}$ \rightarrow 2 Fe $_{(s)}$ + 3 CO $_{2(s)}$

 ΔG° = -31.3 kJ. Calculate the standard free energy of formation of the ferric oxide, Fe₂O₃,

if ΔG_{f}° of CO = -137 kJ/mol and ΔG_{f}° of CO₂ = -394 kJ/mol.

Solution:

This time we are given the value ΔG° for the entire reaction, and need to find ΔG°_{f} for one of the reaction participants, Fe₂O₃. Let's let that unknown equal *x*: (Yes, you could look up the answer in the Table of Thermochemical Data, but let's use that to check our answer at the end)

Fe_2O_3	+	3 CO	\rightarrow	2 Fe	+	3 CO ₂
x	+	3 × (-137)		2×0	+	3 × (-394)
	-411		_		-1182	

Next, set up our formula for ΔG° and substitute in the values we know, then solve for x:

 $\Delta G = \Sigma \Delta G^{\circ}_{\text{products}} - \Sigma \Delta G^{\circ}_{\text{reactants}}$ -31.3 = (-1182) - (x - 411) -31.3 = -1182 - x + 411 -31.3 = -771 - xAnswer - $\Delta G^{\circ}_{\text{f}}$ for Fe₂O₃ = -740 kJ/mol x = -771 + 31.3 = -740