\qquad

Chemistry 30
Unit 2: Chemical Kinetics
Assignment 1: 1-1 to 1-3
MAX: 10

Each question is worth 2 marks

1. During the combustion of methane, CH_{4}, shown by the reaction

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

the concentration of methane was measured at various time intervals and the following results were obtained:

Time (s)	$\left[\mathrm{CH}_{4}\right]$ $\left(\mathrm{mol} \cdot \mathrm{l}^{-1}\right)$
10	2.40
20	1.20
30	0.80
40	0.60

Calculate the average rate of loss of methane during the 10 to 40 second time period.

Rate $=\frac{\Delta\left[\mathrm{CH}_{4}\right]}{\Delta \text { time }}=\frac{0.60-2.40}{40-10}=\frac{-1.8}{30}=-0.06 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~s}^{-1}$ or $\frac{0.06 \mathrm{M}}{\mathrm{s}}$
We are usually not concerned with the sign for rate (positive or negative)
2. Consider the following reaction: $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

If the rate of decomposition of $\mathrm{N}_{2}(\mathrm{~g})$ is $0.03 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~s}^{-1}$, what is the rate of formation of $\mathrm{NH}_{3}(\mathrm{~g})$?

Because the ratio of moles of NH_{3} to N_{2} is 2:1 (from the balanced equation shown above), the rate of NH_{3} production will be twice the rate of loss of N_{2} :

Rate $\mathrm{NH}_{3}=2 \times 0.03 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~s}^{-1}=0.06 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~s}^{-1}$
\qquad
3. Measurements taken during the reaction $\mathrm{CO}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$ showed a concentration of carbon monoxide of 0.019 mol at 27 min and of 0.013 mol at 45 min . Calculate the average rate, in $\cdot \mathrm{L}^{-1} \cdot \mathrm{~min}^{-1}$, over this 18 min period, of each of the following:
a) the loss of carbon monoxide, CO

$$
\text { Rate }=\frac{\Delta[C O]}{\Delta \text { time }}=\frac{0.019-0.013}{27-45}=\frac{0.006}{18}=3.3 \times 10^{-4} \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~min}^{-1}
$$

b) the gain of carbon dioxide, CO_{2}

The balanced equation indicates a 1:1 ratio between CO and CO_{2}
Therefore the rate of gain of CO_{2} will equal the rate of loss of CO

$$
\text { Rate gain } \mathrm{CO}_{2}=3.3 \times 10^{-4} \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~min}^{-1} \text { or } \frac{3.3 \times 10^{-4} \mathrm{~mol}}{\mathrm{~L} \cdot \mathrm{~min}}
$$

4. In the following reaction the average rate of loss of carbon monoxide, over a set period, is $0.15 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~s}^{-1}$.

$$
2 \mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{~s})
$$

What is the average rate of production of carbon dioxide during the same period.

The ratio between CO_{2} and CO is 1: $2\left(1 \mathrm{CO}_{2}\right.$ for 2 CO$)$
Thus the rate of CO_{2} production is $1 / 2$ the rate of loss of CO :

$$
\begin{aligned}
\text { Rate }=1 / 2\left(0.15 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~S}^{-1} \cdot\right)= & 7.5 \times 10^{-2} \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~s}^{-1} \\
& \left(0.075 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~s}^{-1} \text { or } \frac{0.075 \mathrm{M}}{\mathrm{~s}}\right)
\end{aligned}
$$

