Name: _____

Chemistry 30 Unit 2: Chemical Kinetics Assignment 1: 1-1 to 1-3

MAX: 10

Each question is worth 2 marks

1. During the combustion of methane, CH₄, shown by the reaction

 $CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$

the concentration of methane was measured at various time intervals and the following results were obtained:

Time	[CH ₄]
(s)	(mol · l⁻¹)
10	2.40
20	1.20
30	0.80
40	0.60

Calculate the average rate of loss of methane during the 10 to 40 second time period.

$$Rate = \frac{\Delta[CH_4]}{\Delta time} = \frac{0.60 - 2.40}{40 - 10} = \frac{-1.8}{30} = -0.06 \, mol \cdot L^{-1} \cdot s^{-1} \, or \quad \frac{0.06M}{s}$$

We are usually not concerned with the sign for rate (positive or negative)

2. Consider the following reaction: $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$

If the rate of decomposition of $N_2(g)$ is 0.03 mol $\cdot L^{-1} \cdot s^{-1}$, what is the rate of formation of $NH_3(g)$?

Because the ratio of moles of NH_3 to N_2 is 2:1 (from the balanced equation shown above), the rate of NH_3 production will be twice the rate of loss of N_2 :

Rate $NH_3 = 2 \times 0.03 \text{ mol} \cdot L^{-1} \cdot s^{-1} = 0.06 \text{ mol} \cdot L^{-1} \cdot s^{-1}$

3. Measurements taken during the reaction $CO(g) + NO_2(g) \rightarrow CO_2(g) + NO(g)$

showed a concentration of carbon monoxide of 0.019 mol at 27 min and of 0.013 mol at 45 min. Calculate the average rate, in $\cdot L^{-1} \cdot \min^{-1}$, over this 18 min period, of each of the following:

a) the loss of carbon monoxide, CO

 $Rate = \frac{\Delta[CO]}{\Delta time} = \frac{0.019 - 0.013}{27 - 45} = \frac{0.006}{18} = 3.3 \times 10^{-4} \, mol \cdot L^{-1} \cdot \min^{-1}$

b) the gain of carbon dioxide, CO₂

The balanced equation indicates a 1:1 ratio between CO and CO₂

Therefore the rate of gain of CO_2 will equal the rate of loss of CO

Rate gain
$$CO_2 = 3.3 \times 10^{-4} \text{ mol} \cdot L^{-1} \cdot \text{min}^{-1} \text{ or } \frac{3.3 \times 10^{-4} \text{ mol}}{L \cdot \text{min}}$$

4. In the following reaction the average rate of loss of carbon monoxide, over a set period, is 0.15 mol $\cdot L^{-1} \cdot s^{-1}$.

$$2 \text{ CO}(g) \rightarrow \text{CO}_2(g) + \text{C}(s)$$

What is the average rate of production of carbon dioxide during the same period.

The ratio between CO_2 and CO is 1: 2 (1 CO_2 for 2 CO)

Thus the rate of CO_2 production is $\frac{1}{2}$ the rate of loss of CO:

Rate =
$$\frac{1}{2}$$
 (0.15 mol \cdot L⁻¹ \cdot s⁻¹.) = 7.5 \times 10⁻² mol \cdot L⁻¹ \cdot s⁻¹

$$(0.075 \ mol \cdot L^{-1} \cdot s^{-1} \ or \ \frac{0.075M}{s})$$