Name:

Chemistry 30 Unit 3: Chemical Equilibrium Assignment 2 2-1 to 2-2 The Equilibrium Constant

- 1. a) What is meant by a reversible reaction?
 - b) Are all chemical reactions reversible?
 - c) Are all reversible reactions always at equilibrium?
 - d) Does a reaction have to be reversible in order to reach equilibrium?
 - e) What, exactly, is equal at equilibrium? (define equilibrium)
 - f) How is equilibrium different from a steady state system?
- 2. Write the equilibrium expression for each of the following reactions. Be sure to pay attention to physical states:
 - a) $Br_2(g) + 5 F_2(g) \rightleftharpoons 2 BrF_5(g)$

b) 4 HCl (g) + $O_2(g) \rightleftharpoons 2 H_2O(g) + 2 Cl_2(g)$

c) $5 \text{ Fe}^{+2}(aq) + \text{MnO}_4(aq) + 8 \text{ H}^+(aq) \rightleftharpoons 5 \text{ Fe}^{+3}(aq) + \text{Mn}^{+2}(aq) + 4 \text{ H}_2\text{O}(l)$

3. For each of the following reactions, state whether the value of the equilibrium constant favours the formation of reactants, products, or both sides equally.

a)
$$I_2(g) + CI_2(g) \rightleftharpoons 2 ICI(g)$$

b) $H_2(g) + CI_2(g) \rightleftharpoons 2 HCI(g)$
c) $I_2(g) \rightleftharpoons I(g) + I(g)$
K_{eq} = 3.8 x 10⁻⁷

4. Molecular chlorine decomposes into atoms according to the reaction:

 $Cl_2(g) \Longrightarrow 2 Cl(g)$

The equilibrium constant for the reaction at 25° C is 1.4 x 10^{-38} . Would many chlorine atoms be present at this temperature? How do you know?

5. Calculate K_{eq} for each of the following. Be sure to set up the equilibrium constant expression first, before substituting in the values.

Show your work! Pay attention to exponents!

a) H₂(g) + Cl₂(g) स 2 HCl	$[H_2] = 1.0 \times 10^{-2} \text{ M}$
	$[Cl_2] = 1.0 \times 10^{-2} \text{ M}$
	[HCI] = 1.0 × 10 ⁻² M

Name:

 $[CO_2] = 3.2 \times 10^{\text{--}2} \text{ M}$

b)
$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

 $[N_2] = 4.4 \times 10^{-2} M$
 $[H_2] = 1.2 \times 10^{-1} M$
 $[NH_3] = 3.4 \times 10^{-3} M$
 $[CO] = 2.5 \times 10^{-3} M$
 $[O_2] = 1.6 \times 10^{-3} M$

d)
$$CH_4(g) + H_2O(g) \leftrightarrow CO(g) + 3 H_2(g)$$
 [CH_4] = 2.97 × 10⁻³ M
[H_2O] = 7.94 × 10⁻³ M
[CO] = 5.45 × 10⁻³ M
[H_2] = 2.1 × 10⁻³ M

6. For the following reaction at equilibrium at 2000°C, the concentration of N_2 and O_2 are both 5.2 M.

$$N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$$
 $K_{eq} = 6.2 \times 10^{-4}$

Calculate the concentration of NO at equilibrium. Show your work; pay careful attention to exponents.

7. Acetic acid, $HC_2H_3O_2$, is in equilibrium with its ions:

$$HC_2H_3O_2(aq) = H^+(aq) + C_2H_3O_2(aq)$$
 $K_{eq} = 1.8 \times 10^{-5}$

At equilibrium, the concentration of the ions are:

 $[H^{+}] = 1.33 \times 10^{-3} \text{ M}$ $[C_{2}H_{3}O_{2}^{-}] = 1.33 \times 10^{-3} \text{ M}$

Calculate the concentration of the acid, $HC_2H_3O_2$.