Chemistry 30

Unit 4: Solutions
 Assignment $3 \quad$ Calculations involving Solution and Ion Concentrations

You must clearly show all work for your calculations. Be sure to highlight your final answer - circle it, underline it, whatever. Be sure to include the units for your answer. Failure to follow these directions will result in a loss of marks.

1. What mass of sodium hydroxide is needed to make 500.0 mL of 0.5 M NaOH solution.

$$
\begin{aligned}
& \text { Molar Mass of } \mathrm{NaOH}=40.0 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \\
& g=\frac{40.0 \mathrm{~g}}{\mathrm{~mol}} \times \frac{0.5 \mathrm{~mol}}{\mathrm{~L}} \times \frac{0.500 \mathrm{~L}}{1}=10.0 \mathrm{~g}
\end{aligned}
$$

2. What volume of 0.060 M KCl solution contains 2.39 g of KCl ?

Molar mass of $\mathrm{KCl}=74.6 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

$$
L=\frac{L}{0.060 \mathrm{~mol}} \times \frac{\mathrm{mol}}{74.6 \mathrm{~g}} \times \frac{2.39 \mathrm{~g}}{1}=0.53 \mathrm{~L} \text { or } 530 \mathrm{~mL}
$$

3. Calculate the concentration of a solution prepared by dissolving 24.2 g of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ in enough water to make 250.0 mL of solution.

$$
\begin{aligned}
& \text { Molar mass of } \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}=399.9 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \\
& M=\frac{\mathrm{mol}}{\mathrm{~L}}=\frac{\mathrm{mol}}{399.9 \mathrm{~g}} \times \frac{24.2 \mathrm{~g}}{1} \times \frac{1}{0.250 \mathrm{~L}}=0.242 \mathrm{M}
\end{aligned}
$$

4. What is the concentration of a solution prepared by dissolving 6.1 g of KSCN in enough water to make 500.0 mL of solution?

Molar mass of KSCN $=97.1 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

$$
M=\frac{\mathrm{mol}}{\mathrm{~L}}=\frac{\mathrm{mol}}{97.1 \mathrm{~g}} \times \frac{1}{0.500 \mathrm{~L}} \times \frac{6.1 \mathrm{~g}}{1}=0.13 \mathrm{M}
$$

5. Describe how to prepare 250 mL of a standard $5.00 \mathrm{M} \mathrm{KNO}_{3}$ solution. Be sure to identify any special lab equipment required. Show all calculations.

This question will require you to find the mass of KNO_{3} that must be used to prepare $\mathbf{2 5 0} \mathbf{~ m L}$ of solution:

$$
\begin{aligned}
& \text { molar mass } \mathrm{KNO}_{3}=101.1 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \\
& g=\frac{101.1 \mathrm{~g}}{\mathrm{~mol}} \times \frac{5.00 \mathrm{~mol}}{\mathrm{~L}} \times \frac{0.250 \mathrm{~L}}{1}=126 \mathrm{~g}
\end{aligned}
$$

How to prepare the solution - mass out 126 g of KNO_{3} and dissolve that in some distilled water. Place this solution in a 250 mL volumetric flask. Using distilled water, fill the flask to the line marked on the flask.
6. Determine the volume of solution that contains 80.0 g of 2.00 M copper(II) nitrate.

$$
\begin{gathered}
\text { molar mass of } \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}=187.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \\
L=\frac{80.0 \mathrm{~g}}{1} \times \frac{\mathrm{mol}}{1876.5 \mathrm{~g}} \times \frac{\mathrm{L}}{2.00 \mathrm{~mol}}=0.213 \mathrm{~L}=213 \mathrm{~mL}
\end{gathered}
$$

7. A student adds enough water to 120 mL of a 6.0 M solution of NaOH until the final volume of the solution is 2.0 L . What is the concentration of the diluted solution?

This is a dilution question - use the formula $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$

$$
\begin{array}{ll}
M_{1}=6.0 \mathrm{M} & M_{2}=M_{2} \\
V_{1}=0.120 \mathrm{~L} & V_{2}=2.0 \mathrm{~L} \quad \text { be sure units for volume are the same! }
\end{array}
$$

$$
\begin{aligned}
& M_{1} V_{1}=M_{2} V_{2} \\
& (6.0)(0.120)=M_{2}(2.0) \\
& \frac{0.72}{2.0}=M_{2} \\
& M_{2}=0.36 \mathrm{M}
\end{aligned}
$$

8. What volume of a $18.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is required to make 2.5 L of a $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

This is a dilution question - use the formula $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$

$$
\begin{array}{ll}
M_{1}=18.0 \mathrm{M} & \mathrm{M}_{2}=1.0 \\
\mathrm{~V}_{1}=\mathrm{V}_{1} & \mathrm{~V}_{2}=2.5 \mathrm{~L}
\end{array}
$$

$$
\begin{aligned}
& M_{1} V_{1}=M_{2} V_{2} \\
& (18.0)\left(V_{1}\right)=(1.0)(2.5) \\
& V_{1}=\frac{2.5}{18.0} \\
& V_{1}=0.139 \mathrm{~L} \text { or } 139 \mathrm{~mL} \text { are required }
\end{aligned}
$$

9. What mass of ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$, is present in 0.30 L of a $0.40 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution? molar mass of $\mathrm{NH}_{4} \mathrm{Cl}=53.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ $g=\frac{53.5 \mathrm{~g}}{\mathrm{~mol}} \times \frac{0.40 \mathrm{~mol}}{L} \times \frac{0.30 \mathrm{~L}}{1}=6.42 \mathrm{~g}$ is present
10. A chemist evaporates 25.0 mL of NaCl solution to dryness and finds 0.585 g of NaCl . What was the molarity of the original solution?

Molar mass of $\mathrm{NaCl}=58.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

$$
M=\frac{\mathrm{mol}}{\mathrm{~L}}=\frac{\mathrm{mol}}{58.5 \mathrm{~g}} \times \frac{0.585 \mathrm{~g}}{1} \times \frac{1}{0.025 \mathrm{~L}}=\frac{0.400 \mathrm{~mol}}{L}
$$

11. What is the concentration of an ammonia solution prepared by diluting 75.00 mL solution of concentrated ammonia, $\mathrm{NH}_{3}(14.8 \mathrm{M})$ to a volume of 2.000 L .

$$
\begin{aligned}
& \mathrm{M}_{1}=14.8 \\
& \mathrm{~V}_{1}=0.075 \mathrm{~L} \\
& \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \\
& (14.8)(0.075)=\mathrm{M}_{2}(2.00) \\
& M_{2}=\frac{1.11}{2} \\
& \mathrm{M}_{2}=0.555 \mathrm{M}
\end{aligned}
$$

$$
\mathrm{M}_{2}=\mathrm{M}_{2}
$$

$$
V_{1}=0.075 \mathrm{~L} \quad \mathrm{~V}_{2}=2.000 \mathrm{~L} \quad \text { be sure units for volume are the same }
$$

12. Calculate the concentrations of the ions in the following solutions. Be sure to write a balanced equation for each dissociation reaction. You MUST remember to include proper ion charges for all ions! The first equation is shown for you.
a) an aqueous solution containing 0.075 M strontium nitrate, $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$

$$
\begin{aligned}
& \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2} \rightleftarrows \mathrm{Sr}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \\
& {\left[\mathrm{Sr}^{2+}\right]=\left[\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}\right]=0.075 \mathrm{M} } \\
& {\left[\mathrm{NO}_{3}^{-}\right]=2 \times\left[\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}\right]=2 \times 0.075 \mathrm{M}=0.15 \mathrm{M} }
\end{aligned}
$$

b) a 0.15 M solution of sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{SO}_{4} \rightleftarrows 2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \\
& {\left[\mathrm{SO}_{4}{ }^{2-}\right]=\left[\mathrm{Na}_{2} \mathrm{SO}_{4}\right]=0.15 \mathrm{M}} \\
& {\left[\mathrm{Na}^{+}\right]=2 \times\left[\mathrm{Na}_{2} \mathrm{SO}_{4}\right]=2 \times 0.15=0.30 \mathrm{M}}
\end{aligned}
$$

c) a 2.000 L aqueous solution containing 107.0 g ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$

Hint: Begin by calculating the concentration of the $\mathrm{NH}_{4} \mathrm{Cl}$ solution.
molar mass of $\mathrm{NH}_{4} \mathrm{Cl}=53.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$M=\frac{\mathrm{mol}}{\mathrm{L}}=\frac{\mathrm{mol}}{53.5 \mathrm{~g}} \times \frac{107.0 \mathrm{~g}}{1} \times \frac{1}{2.000 \mathrm{~L}}=\frac{1.00 \mathrm{~mol}}{\mathrm{~L}}=1.00 \mathrm{M}=\left[\mathrm{NH}_{4} \mathrm{Cl}\right]$

Write the balanced equation: $\quad \mathrm{NH}_{4} \mathrm{Cl} \rightleftarrows \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
$\left[\mathrm{NH}_{4}{ }^{+}\right]=\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=1.00 \mathrm{M}$
$\left[\mathrm{Cl}^{-}\right]=\left[\mathrm{NH}_{4} \mathrm{Cl}\right]=1.00 \mathrm{M}$
d) 250.0 mL solution containing 25.50 g of sodium phosphate

Hint: Be sure to write the correct chemical formula for sodium phosphate. Then determine the concentration of the sodium phosphate solution. Write a balanced dissociation equation in order to next determine the concentration of the ions in solution.

$$
\begin{aligned}
& \text { sodium phosphate }=\mathrm{Na}_{3} \mathrm{PO}_{4} \\
& \text { molar mass of } \mathrm{Na}_{3} \mathrm{PO}_{4}=164.0 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \\
& M=\frac{\mathrm{mol}}{\mathrm{~L}}=\frac{\mathrm{mol}}{164.0 \mathrm{~g}} \times \frac{25.5 \mathrm{~g}}{1} \times \frac{1}{0.250 \mathrm{~L}}=0.622 \mathrm{M}=\left[\mathrm{Na}_{3} \mathrm{PO}_{4}\right]
\end{aligned}
$$

The balanced equation: $\quad \mathrm{Na}_{3} \mathrm{PO}_{4} \rightleftarrows 3 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})$
$\left[\mathrm{Na}^{+}\right]=3 \times\left[\mathrm{Na}_{3} \mathrm{PO}_{4}\right]=3 \times 0.622=1.87 \mathrm{M}$
$\left[\mathrm{PO}_{4}{ }^{3-}\right]=\left[\mathrm{Na}_{3} \mathrm{PO}_{4}\right]=0.622 \mathrm{M}$

