\qquad

Chemistry 30

Unit 4: Solutions

Assignment 4 - The Solubility Product Constant, $\mathrm{K}_{\text {sp }}$

1. Write the balanced equation and the solubility product constant expression, $\mathrm{K}_{\text {sp }}$, for the each of the following dissociation reactions. All compounds are solids. One has been given as an example.

An important reminder - the seven diatomic molecules $\left(\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}\right)$
ARE NOT diatomic as ions!
Reminders - ion charges MUST BE included.

- solids (and liquids) are NOT included in the equilibrium expression
- don't forget to include exponents when needed
- polyatomic ions (e.g. $\mathrm{CO}_{3}{ }^{-}$) do not break apart

Compound	Equation	$\mathrm{K}_{\text {sp }}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}(\mathrm{~s}) \rightleftarrows 2 \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq})$	$\mathrm{K}_{\text {sp }}=\left[\mathrm{NH}_{4}{ }^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]$
CaS	$\mathrm{CaS}(\mathrm{s}) \not \equiv \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq})$	$\mathrm{K}_{\text {sp }}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{S}^{2-}\right]$
$\mathrm{K}_{2} \mathrm{SO}_{4}$	$\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{~s}) \rightleftarrows 2 \mathrm{~K}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{K}^{+}\right]^{2}\left[\mathrm{SO}_{4}{ }^{2}\right]$
$\mathrm{Mg}(\mathrm{OH})_{2}$	$\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftarrows \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$	$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Mg}^{2+}\right][\mathrm{OH}]^{2}$

2. Consider the $\mathrm{K}_{\text {sp }}$ values for the following substances, all measured at $25^{\circ} \mathrm{C}$
$\mathrm{PbCrO}_{4} \quad 2.0 \times 10^{-16}$
$\mathrm{PbSO}_{4} \quad 1.3 \times 10^{-8}$
$\mathrm{PbCO}_{3} \quad 7.4 \times 10^{-14}$

Which substance is MOST soluble (dissolves the best)
PbSO_{4}

Which substances is LEAST soluble (dissolves the worst)
PbCrO_{4}
\qquad
3. Solutions are prepared by dissolving a sulfate salt (an ionic compound containing the sulfate ion) in water. Which one of the compounds listed would we use in order to get the highest concentration of sulfate ion, $\mathrm{SO}_{4}{ }^{2-}$?
(a salt is an ionic compound that contains a positive ion other than hydrogen and a negative ion other than hydroxide).
A. $\mathrm{CaSO}_{4} \quad \mathrm{~K}_{\text {sp }}=2.6 \times 10^{-4}$
B. $\mathrm{SrSO}_{4} \quad \mathrm{~K}_{\mathrm{sp}}=7.6 \times 10^{-7}$
C. $\mathrm{BaSO}_{4} \quad \mathrm{~K}_{\mathrm{sp}}=1.5 \times 10^{-9}$
D. $\mathrm{RaSO}_{4} \quad \mathrm{~K}_{\mathrm{sp}}=4.0 \times 10^{-11}$
4. Calculate K_{sp} for a saturated nickel(II) sulfide, NiS, solution with a molar concentration of 3.27×10^{-11}

Begin with a balanced dissociation equation:

$$
\mathrm{NiS} \rightleftarrows \mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{S}^{2}(\mathrm{aq})
$$

From information provided in the question and the balanced equation, determine the concentration of the ions Ni^{2+} and S^{2-} :

$$
\begin{aligned}
& {\left[\mathrm{Ni}^{2+}\right]=1 \times 3.27 \times 10^{-11}=3.27 \times 10^{-11} \mathrm{M}} \\
& {\left[\mathrm{~S}^{2}\right]=1 \times 3.27 \times 10^{-11}=3.27 \times 10^{-11} \mathrm{M}}
\end{aligned}
$$

Write the K_{sp} expression for this reaction:

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ni}^{\mathrm{i}^{2+}}\right]\left[\mathrm{S}^{2}\right]
$$

Substitute values into the equation and solve for the unknown, K_{sp} :

$$
K_{\text {sp }}=\left(3.27 \times 10^{-11}\right)\left(3.27 \times 10^{-11}\right)=1.07 \times 10^{-21}
$$

\qquad
5. At $25^{\circ} \mathrm{C}$, the concentration of $\mathrm{Ce}(\mathrm{OH})_{3}$ in a saturated solution is $5.1 \times 10^{-6} \mathrm{M}$. Calculate $\mathrm{K}_{\text {sp }}$.

Begin with a balanced equation:

$$
\mathrm{Ce}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{Ce}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})
$$

Determine the concentration of the ions in the solution. Be careful with $\left[\mathrm{OH}^{-}\right]$.

$$
\begin{aligned}
& {\left[\mathrm{Ce}^{3+}\right]=1 \times\left(5.1 \times 10^{-6}\right)=5.1 \times 10^{-6}} \\
& {\left[\mathrm{OH}^{-}\right]=3 \times\left(5.1 \times 10^{-6}\right)=1.53 \times 10^{-5}}
\end{aligned}
$$

Write the $\mathrm{K}_{\text {sp }}$ expression, then substitute values into the equation and solve for the unknown, K_{sp}.

$$
\begin{aligned}
\mathrm{K}_{\text {sp }} & =\left[\mathrm{Ce}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3} \\
& =\left(5.1 \times 10^{-6}\right)\left(1.53 \times 10^{-5}\right)^{3} \\
& =\left(5.1 \times 10^{-6}\right)\left(3.58 \times 10^{-15}\right) \\
& =1.8 \times 10^{-20}
\end{aligned}
$$

6. Calculate the concentration of ions in a saturated solution of CaCO_{3} in water at $25^{\circ} \mathrm{C}$. $\mathrm{K}_{\text {sp }}$ for CaCO_{3} is 4.8×10^{-9}.

$$
\begin{array}{ll}
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \\
{\left[\mathrm{Ca}^{2+}\right]=x} & \text { (Let the unknown concentration }=x) \\
{\left[\mathrm{CO}_{3}{ }^{2-}\right]=x} & \text { (the concentrations of } \mathrm{Ca}^{2+} \text { and } \mathrm{CO}_{3}^{2-} \text { will be the same) }
\end{array}
$$

Next substitute in the known and unknown values

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2}\right] \\
& 4.8 \times 10^{-9}=\mathrm{x}^{2} \\
& \sqrt{ } 4.8 \times 10^{-9}=x=6.9 \times 10^{-5} \\
& x=\left[\mathrm{Ca}^{2+}\right]=6.9 \times 10^{-5} \mathbf{~ M} \\
& x=\left[\mathrm{CO}_{3}{ }^{2}\right]=6.9 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

