Chemistry 30 Unit 4: Solutions Assignment 5 – Net Ionic Equations and Precipitation Reactions

1. Use a Table of Solubilities to predict whether or not the following compounds are soluble in water.

Soluble (yes or no)	
yes	
yes	
no	
yes	
no	
no	

2. Write formulas for the following compounds, and using a Table of Solubilities predict whether or not the compound is soluble in water.

		Formula	Soluble (y/n)	
a)	potassium phosphate	K ₃ PO ₄	yes	
b)	calcium carbonate	CaCO ₃	no	
c)	copper(II) bromide	CuBr ₂	yes	
d)	aluminum sulfide	Al ₂ S ₃	no	

3. What are spectator ions?

lons that are present during a reaction but undergo no chemical change

4. For each of the following reactions, predict the products of the reaction. Be sure to write **balanced equations**.

Then determine if any of the products forms a precipitate.

- If no precipitate forms, write **NR** (for "No Reaction").
- If a precipitate forms, write the **net ionic equation** for the reaction.
- a. Mg(NO₃)₂ (aq) + 2 NaOH (aq) \rightarrow Mg(OH)_{2(s)} + 2 NaNO₃ (aq)

 $\operatorname{Mg}^{2+}_{(aq)} + 2 \operatorname{OH}^{-}_{(aq)} \rightarrow \operatorname{Mg}(\operatorname{OH})_{2(s)}$

b. $CuSO_{4}(aq) + FeCI_{3}(aq) \rightarrow CuCI_{2}(aq) + Fe_{2}(SO_{4})_{3}(aq)$ No Reaction

c.
$$K_2CO_3 (aq) + Sr(OH)_2 (aq) \rightarrow SrCO_3 (s) + 2 KOH (aq)$$

$$Sr^{2+}_{(aq)} + CO_3^{2-}_{(aq)} \rightarrow SrCO_3_{(s)}$$

- 5. An aqueous solution contains a mixture of Ba²⁺, Pb²⁺ and Ca²⁺. Select the ONE negative ion listed below which could be used to separate Ba²⁺ from the other two positive ions in the mixture.
 - A. Cl⁻ Cl⁻ precipitates only with Pb²⁺
 - B. S²⁻ S²⁻ precipitates only with Pb²⁺
 - C. OH⁻ OH⁻ forms a precipitate with Pb²⁺ and Ca²⁺ but not with Ba²⁺
 - D. PO_4^{3-} **PO**₄³⁻ precipitates with all three cations
 - E. $SO_4^{2^-}$ SO₄²⁻ precipitates with all three cations

6. An aqueous solution containing the following cations:

 Ca^{2+} Ag^{+} Cu^{2+} K^{+}

In order to separate them, the following solutions are available:

Na₂S Na₂CO₃ NaBr

If we wish to separate the cations by causing only one cation to precipitate out of solution as a time:

- in what order should the solutions Na₂S, Na₂CO₃, and NaBr be added?
- identify the three precipitates that form after the addition of those solutions.
- which one cation will remain in solution?

	Ca ²⁺	Ag⁺	Cu ²⁺	K⁺
S ²⁻		ppt	ppt	
CO3 ²⁻	ppt	ppt	ppt	
Br⁻		ppt		

ppt = forms a precipitate

 1^{st} add NaBr to form the precipitate AgBr. Ag⁺ ions are now removed from the mixture 2^{nd} add Na₂S to form the precipitate CuS. Cu²⁺ are now removed from the mixture 3^{rd} add Na₂CO₃ to form the precipitate CaCO₃. Ca²⁺ ions are now removed The K⁺ ions will now be the only cations present in the original solution.