Chemistry 30
Unit 4: Solutions
Assignment 5 - Net Ionic Equations and Precipitation Reactions

1. Use a Table of Solubilities to predict whether or not the following compounds are soluble in water.

Compound	Soluble (yes or no)
CaI_{2}	yes
MgSO_{4}	yes
AlPO_{4}	no
$\left(\mathrm{NO}_{3}\right)_{2}$	yes
$\mathrm{Ag}_{2} \mathrm{SO}_{4}$	no
$\mathrm{Ca}(\mathrm{OH})_{2}$	no

2. Write formulas for the following compounds, and using a Table of Solubilities predict whether or not the compound is soluble in water.

	Formula	Soluble (y/n)
a) potassium phosphate	$\mathrm{K}_{3} \mathrm{PO}_{4}$	yes
b) calcium carbonate	CaCO_{3}	no
c) copper(II) bromide	CuBr_{2}	yes
d) aluminum sulfide	$\mathrm{Al}_{2} \mathrm{~S}_{3}$	no

3. What are spectator ions?

Ions that are present during a reaction but undergo no chemical change
4. For each of the following reactions, predict the products of the reaction. Be sure to write balanced equations.

Then determine if any of the products forms a precipitate.

- If no precipitate forms, write NR (for "No Reaction").
- If a precipitate forms, write the net ionic equation for the reaction.
a. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathbf{M g}(\mathrm{OH})_{2(\mathrm{~s})}+2 \mathrm{NaNO}_{3(\mathrm{aq})}$

$$
\mathrm{Mg}^{2+}(a q)+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2(s)}
$$

b. $\mathrm{CuSO}_{4}(a q)+\mathrm{FeCl}_{3}(a q) \rightarrow \mathrm{CuCl}_{2}(a q)+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)$

No Reaction
c. $\mathrm{K}_{2} \mathrm{CO}_{3}(a q)+\mathrm{Sr}(\mathrm{OH})_{2}(a q) \rightarrow \mathrm{SrCO}_{3}(\mathrm{~s})+\mathbf{2} \mathrm{KOH}_{(a q)}$

$$
\mathrm{Sr}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{SrCO}_{3(\mathrm{~s})}
$$

5. An aqueous solution contains a mixture of $\mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}$ and Ca^{2+}. Select the ONE negative ion listed below which could be used to separate Ba^{2+} from the other two positive ions in the mixture.
A. Cl^{-}
Cl^{-}precipitates only with Pb^{2+}
B. S^{2-}
S^{2-} precipitates only with $\mathrm{Pb}^{\mathbf{2 +}}$
C. $\mathrm{OH}^{-} \quad \mathrm{OH}^{-}$forms a precipitate with Pb^{2+} and Ca^{2+} but not with Ba^{2+}
D. $\mathrm{PO}_{4}{ }^{3-} \quad \mathrm{PO}_{4}{ }^{3-}$ precipitates with all three cations
E. $\mathrm{SO}_{4}{ }^{2-} \quad \mathrm{SO}_{4}{ }^{2-}$ precipitates with all three cations
6. An aqueous solution containing the following cations:
Ca^{2+}
Ag^{+}
Cu^{2+}
K^{+}

In order to separate them, the following solutions are available:
$\mathrm{Na}_{2} \mathrm{~S}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}$
NaBr

If we wish to separate the cations by causing only one cation to precipitate out of solution as a time:

- in what order should the solutions $\mathrm{Na}_{2} \mathrm{~S}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, and NaBr be added?
- identify the three precipitates that form after the addition of those solutions.
- which one cation will remain in solution?

	$\mathbf{C a}^{\mathbf{2 +}}$	$\mathbf{A g}^{+}$	$\mathbf{C u}^{\mathbf{2 +}}$	\mathbf{K}^{+}
$\mathbf{S}^{\mathbf{2 -}}$		ppt	ppt	
$\mathbf{C O}_{3}{ }^{\mathbf{2 -}}$	ppt	ppt	ppt	
Br^{-}		ppt		

ppt $=$ forms a precipitate
$1^{\text {st }}$ add NaBr to form the precipitate AgBr . Ag^{+}ions are now removed from the mixture $2^{\text {nd }}$ add $\mathrm{Na}_{2} \mathrm{~S}$ to form the precipitate $\mathrm{CuS} . \mathrm{Cu}^{2+}$ are now removed from the mixture $3^{\text {rd }}$ add $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to form the precipitate $\mathrm{CaCO}_{3} . \mathrm{Ca}^{2+}$ ions are now removed The K^{+}ions will now be the only cations present in the original solution.

