\qquad
Chemistry 30
Unit 4: Solutions
Assignment $3 \quad$ Calculations involving Solution and lon Concentrations

You must clearly show all work for your calculations. Be sure to highlight your final answer - circle it, underline it, whatever. Be sure to include the units for your answer. Failure to follow these directions will result in a loss of marks.

1. What mass of sodium hydroxide is needed to make 500.0 mL of 0.5 M NaOH solution.
2. What volume of 0.060 M KCl solution contains 2.39 g of KCl ?
3. Calculate the concentration of a solution prepared by dissolving 24.2 g of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ in enough water to make 250.0 mL of solution.

Name:
4. What is the concentration of a solution prepared by dissolving 6.1 g of KSCN in enough water to make 500.0 mL of solution?
5. Describe how to prepare 250 mL of a standard $5.00 \mathrm{M} \mathrm{KNO}_{3}$ solution. Be sure to identify any special lab equipment required. Show all calculations.
6. Determine the volume of solution that contains 80.0 g of 2.00 M copper(II) nitrate.

Name:
7. A student adds enough water to 120 mL of a 6.0 M solution of NaOH until the final volume of the solution is 2.0 L . What is the concentration of the diluted solution?
8. What volume of a $18.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is required to make 2.5 L of a $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
9. What mass of ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$, is present in 0.30 L of a $0.40 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution?
\qquad
10. A chemist evaporates 25.0 mL of NaCl solution to dryness and finds 0.585 g of NaCl . What was the molarity of the original solution?
11. What is the concentration of an ammonia solution prepared by diluting 75.00 mL solution of concentrated ammonia, $\mathrm{NH}_{3}(14.8 \mathrm{M})$ to a volume of 2.000 L .
12. Calculate the concentrations of the ions in the following solutions. Be sure to write a balanced equation for each dissociation reaction. You MUST remember to include proper ion charges for all ions! The first equation is shown for you.
a) an aqueous solution containing 0.075 M strontium nitrate, $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$

$$
\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2} \rightleftharpoons \mathrm{Sr}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

b) a 0.15 M solution of sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Name:
c) a 2.000 L aqueous solution containing 107.0 g ammonium chloride, $\mathrm{NH}_{4} \mathrm{Cl}$

Hint: Begin by calculating the concentration of the $\mathrm{NH}_{4} \mathrm{CI}$ solution.
d) 250.0 mL solution containing 25.50 g of sodium phosphate

Hint: Be sure to write the correct chemical formula for sodium phosphate. Then determine the concentration of the sodium phosphate solution. Write a balanced dissociation equation in order to next determine the concentration of the ions in solution.

