Chemistry 30 Unit 4: Solutions Assignment 5 – Net Ionic Equations and Precipitation Reactions

1. Use a Table of Solubilities to predict whether or not the following compounds are soluble in water.

Compound	Soluble (yes or no)
Cal ₂	
MgSO ₄	
AIPO ₄	
Pb(NO ₃) ₂	
Ag ₂ SO ₄	
Ca(OH) ₂	

2. Write formulas for the following compounds, and using a Table of Solubilities predict whether or not the compound is soluble in water.

		Formula	Soluble (y/n)
a)	potassium phosphate		
b)	calcium carbonate		
C)	copper(II) bromide		
d)	aluminum sulfide		
3. Wh	at are spectator ions?		

4. For each of the following reactions, predict the products of the reaction. Be sure to write **balanced equations**.

Then determine if any of the products forms a precipitate.

- If no precipitate forms, write **NR** (for "No Reaction").
- If a precipitate forms, write the **net ionic equation** for the reaction.
- a. Mg(NO₃)_{2 (aq)} + 2 NaOH (aq) \rightarrow

b. $CuSO_4(aq) + FeCl_3(aq) \rightarrow$

c. K_2CO_3 (aq) + Sr(OH)₂ (aq) \rightarrow

- 5. An aqueous solution contains a mixture of Ba²⁺, Pb²⁺ and Ca²⁺. Select the ONE negative ion listed below which could be used to separate Ba²⁺ from the other two positive ions in the mixture.
 - A. Cl⁻
 - B. S²⁻
 - C. OH⁻
 - D. PO4³⁻
 - E. SO4²⁻

6. An aqueous solution containing the following cations:

 Ca^{2+} Ag^{+} Cu^{2+} K^{+}

In order to separate them, the following solutions are available:

Na₂S Na₂CO₃ NaBr

If we wish to separate the cations by causing only one cation to precipitate out of solution as a time:

- in what order should the solutions Na₂S, Na₂CO₃, and NaBr be added?
- identify the three precipitates that form after the addition of those solutions.
- which one cation will remain in solution?