$\qquad$
Chemistry 30 Unit Exam
60 marks total
SOLUTIONS
I. Multiple Choice

1. A solution that contains only a small amount of solute is best described as:
A. dilute
C. saturated
B. supersaturated
D. miscible
2. A solution in which dissolved and undissolved solute are in equilibrium is *****.
A. saturated
C. dilute
B. concentrated
D. unsaturated
3. Acids and ionic compounds (salts) generally dissolve in water and produce ions. These solutions can conduct electricity and are thus called:
A. polar
C. electrolytes
B. solutes
D. diluted
4. A small crystal of ammonium chloride is added to a solution of ammonium chloride and shaken vigorously. If the crystal dissolves, the original solution was:
A. dilute
C. unsaturated
B. concentrated
D. saturated
5. A measure of solution concentration calculated as the number of moles of solute dissolved in one litre of solution is known as:
A. ppm
C. normality
B. molarity
D. molality
6. If the pressure of a gas above a liquid is increased, while the temperature remains constant, the solubility of the gas in the liquid:
A. remains unchanged
B. increases
C. decreases
D. would be impossible to calculate
7. An ionic compound has a solubility of 30 grams per 100 mL of water at room temperature. A solution of the same substance that contains 80 grams of the compound in 250 mL of water at room temperature is:
A. saturated
B. supersaturated
C. unsaturated
D. immiscible
8. The symbol $M$, for molarity, is best described by which unit(s):
A. molecules • $\mathrm{L}^{-1}$
C. $\mathrm{L} \cdot \mathrm{mol}^{-1}$
B. $\mathrm{mol} \cdot \mathrm{L}^{-1}$
D. moles
9. Which material will have the largest concentration of $\mathrm{Ag}^{+}$ions present in a saturated aqueous solution?
A. $\mathrm{AgCH}_{3} \mathrm{COO}$
$\mathrm{K}_{\mathrm{sp}}=2.0 \times 10^{-3}$
B. $\mathrm{AgIO}_{3}$
$\mathrm{K}_{\text {sp }}=3.0 \times 10^{-8}$
C. AgCl
$\mathrm{K}_{\mathrm{sp}}=1.7 \times 10^{-10}$
D. AgBr
$\mathrm{K}_{\text {sp }}=5.0 \times 10^{-13}$
10. When $\mathrm{Ca}^{2+}(\mathrm{aq})$ ions are added to an unknown solution, large amounts of a white precipitate form immediately.

The unknown solution could be which of the following:
A. NaCl
B. $\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
C. $\mathrm{NaNO}_{3}$
D. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
11. Which positive ion will form a compound with low solubility in water when combined with $\mathrm{OH}^{-}$?
A. $\mathrm{Cu}^{2+}$
B. $\mathrm{K}^{+}$
C. $\mathrm{H}^{+}$
D. $\mathrm{NH}_{4}^{+}$
12. What is the molarity of 200 mL of solution in which 2.0 moles of sodium bromide is dissolved?
A. $\quad 2.0 \mathrm{M}$
B. $\quad 0.40 \mathrm{M}$
C. 10 M
D. 4.0 M
13. If 0.20 moles of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ were dissolved to make 500 mL of solution, the concentration of the calcium ion, $\mathrm{Ca}^{2+}$ would be:
A. 0.20 M
B. 0.60 M
C. 0.40 M
D. 1.2 M
14. What volume of 18.0 M aqueous sulfuric acid is needed to make 5.00 L of a 0.500 M aqueous solution?
A. 0.155 L
B. 0.139 L
C. 0.278 L
D. 0.070 L
15. Which of the following equations represents the solubility product constant, $\mathrm{K}_{\mathrm{Sp}}$, for the following reaction:
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{~s}) \rightleftarrows 3 \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})$
A. $K_{s p}=\frac{\left[\mathrm{NH}_{4}^{+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]}{\left[\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}\right]}$
B. $K_{s p}=\left[\mathrm{NH}_{4}^{+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]$
C. $K_{s p}=\frac{\left[\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}\right]}{\left[\mathrm{NH}_{4}^{+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]}$
D. $K_{s p}=\frac{1}{\left[\mathrm{NH}_{4}{ }^{+}\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}\right]}$
16. How many moles of $\mathrm{KIO}_{3}$ would be needed to make 8 mL of solution having a concentration of 0.20 M ?
A. 1.6
B. 0.0016
C. 0.25
D. 40
17. If you mix equal volumes of NaOH solution and $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ solution, the formula for the most likely precipitate would be:
A. $\mathrm{Al}(\mathrm{OH})_{3}$
B. $\mathrm{Na}\left(\mathrm{NO}_{3}\right)_{3}$
C. AlOH
D. $\mathrm{NaNO}_{3}$
18. An aqueous solution contains a mixture of $\mathrm{Mg}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}$, and $\mathrm{Fe}^{2+}$. One positive ion and one only would be precipitated out when a solution of which one of the following negative ions is added:
A. $\mathrm{SO}_{4}{ }^{2-}$
B. $\mathrm{NO}_{3}^{-}$
C. $\mathrm{I}^{-}$
D. $\mathrm{PO}_{4}{ }^{3-}$

USE THE FOLLOWING GRAPH ILLUSTRATING THE SOLUBILITY CURVE OF $\mathrm{NH}_{4} \mathrm{Cl}$ TO ANSWER QUESTIONS 19 \& 20.

19. If a solution of $\mathrm{NH}_{4} \mathrm{Cl}$ is found to contain 50 g of solute per 100 g of water at $20^{\circ} \mathrm{C}$, the solution must be:
A. dilute
C. saturated
B. unsaturated
D. supersaturated
20. Approximately what mass of $\mathrm{NH}_{4} \mathrm{Cl}$ can be dissolved in 100 mL of water at $50^{\circ} \mathrm{C}$ :
A. 25 g
B. 50 g
C. $\quad 35 \mathrm{~g}$
D. 60 g

1. Calculate the concentration (molarity) of a solution prepared by dissolving 12.00 grams of potassium chloride, KCl , in water, for a total solution volume of 250.0 mL .
2. Calculate the mass of $\mathrm{AgNO}_{3}$ required to make 200 mL of 0.40 M silver nitrate solution.
3. What volume of a 1.44 M solution of potassium sulfide $\left(\mathrm{K}_{2} \mathrm{~S}\right)$ contains 113.0 g of $\mathrm{K}_{2} \mathrm{~S}$ ?
4. A solution is prepared by adding enough water to 5.88 g of calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$ to make a solution volume of 0.750 L .
a) Write a balanced equation for the dissociation reaction.
b) Calculate the concentration of the calcium hydroxide solution.
c) Determine the concentration of the calcium ions, $\mathrm{Ca}^{2+}$, and hydroxide ions, $\mathrm{OH}^{-}$.
5. What volume of a 2.00 M NaOH stock solution would you require in order to prepare 250 mL of a 0.600 M NaOH solution?
6. A contaminated sample of water contains 325 ppm of lead ions, $\mathrm{Pb}^{2+}$. Calculate the concentration of lead ions in mol $\bullet \mathrm{L}^{-1}$. Show all work.
7. A calcium nitrate solution, $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$, is mixed with an ammonium sulfate solution, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.
a. Write a balanced equation for this reaction. You must indicate the physical state of all participants. This will include predicting any precipitates that might form.
b. Write the net ionic equation for this reaction.

2
8. Write the equations for the reactions that occur when each of the following electrolytes is dissolved in water AND the solubility product expressions

| Compound | Balanced Dissociation Equation |  |
| :---: | :---: | :---: |
| $\mathrm{Ba}(\mathrm{OH})_{2}$ | $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons$ | $\mathrm{K}_{\mathrm{sp}}$ Expression |
|  |  | $\mathrm{K}_{\mathrm{sp}}=$ |
| $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightleftharpoons$ | $\mathrm{K}_{\mathrm{sp}}=$ |

9. At a certain temperature a saturated solution of calcium carbonate, $\mathrm{CaCO}_{3}$, has a concentration of $7.1 \times 10^{-5} \mathrm{~mol}^{\bullet} \mathrm{L}^{-1}$. Calculate the value of $\mathrm{K}_{\mathrm{sp}}$ of calcium carbonate.
10. Calculate the concentrations of barium ions, $\mathrm{Ba}^{2+}$, and sulfate ions, $\mathrm{SO}_{4}{ }^{2-}$, in a saturated aqueous solution of barium sulfate, $\mathrm{BaSO}_{4}$, in which the value of $\mathrm{K}_{\text {sp }}$ is $1.1 \times 10^{-10}$.
11. You are given a solution that contains the following anions

$$
\mathrm{I}^{-} \quad \mathrm{CO}_{3}^{2-} \quad \mathrm{SO}_{4}^{2-}
$$

You wish to separate these ions by causing one, and only one, ion to precipitate out of solution at a time. In order to do so you are provided with the following cations in solution (all are nitrate compounds):

$$
\mathrm{Ba}^{2+} \quad \mathrm{Fe}^{3+} \quad \mathrm{Pb}^{2+}
$$

In what order should you add these solutions in order to remove one anion at a time from the original solution, by precipitation? Give the formulas of the three precipitates that you will be forming.

