S	olutions	60		
I.	Multiple Cho	ice		20
	1. A 2. A 3. C 4. C 5. B	6. B 7. B 8. B 9. A 10. D	11. A 12. C 13. D 14. B 15. B	16. B 17. A 18. C 19. D 20. B

II. Short Answer

1. Calculate the concentration (molarity) of a solution prepared by dissolving 12.00 grams of potassium chloride, KCI, in water, for a total solution volume of 250.0 mL.

Molar mass of KCI = 74.6 g/mol

$$M = \frac{\text{mol}}{L} = \frac{12.0 \text{ g}}{1} \times \frac{\text{mol}}{74.6 \text{ g}} \times \frac{1}{0.250 \text{ L}} = 0.643 \text{ M}$$

2. Calculate the mass of AgNO₃ required to make 200 mL of 0.40 M silver nitrate solution.

Molar mass of AgNO₃ is 169.9 g/mol

$$g = \frac{169.9 \text{ g}}{\text{mol}} \times \frac{0.40 \text{ mol}}{1} \times \frac{0.200 \text{ L}}{1} = 13.6 \text{ g}$$

3

3

1

3

2

3. What volume of a 1.44 M solution of potassium sulfide (K₂S) contains 113.0 g of K₂S?

Molar mass of K_2 S = 110.3 g/mol

$$L = \frac{L}{1.44 \text{ mol}} \times \frac{\text{mol}}{110.3 \text{ g}} \times \frac{113.0 \text{ g}}{1} = 0.712 \text{ L}$$

- 4. A solution is prepared by adding enough water to 5.88 g of calcium hydroxide, Ca(OH)₂ to make a solution volume of 0.750 L.
 - a) Write a balanced equation for the dissociation reaction.

$$Ca(OH)_2 \rightarrow Ca^{2+} + 2 OH^{-}$$

b) Calculate the concentration of the calcium hydroxide solution.

$$M = \frac{\text{mol}}{L} = \frac{5.88 \text{ g}}{1} \times \frac{\text{mol}}{74.1 \text{ g}} \times \frac{1}{0.750 \text{ L}} = 0.106 \text{ M}$$

c) Determine the concentration of the calcium ions, Ca²⁺, and hydroxide ions, OH⁻.

$$[Ca^{2+}] = [Ca(OH)_2] = 0.106 \text{ M}$$

 $[OH^-] = 2 \times [Ca(OH)_2] = 0.212$

5. What volume of a 2.00 M NaOH stock solution would you require in order to prepare 250 mL of a 0.600 M NaOH solution?

$$M_1V_1 = M_2V_2$$

$$(2.0\frac{\text{mol}}{\text{L}})(V_1) = (0.600\frac{\text{mol}}{\text{L}})(0.250\text{ L})$$

$$V_1 = 0.075\text{ L or 75 mL}$$

6. A contaminated sample of water contains 325 ppm of lead ions, Pb^{2+} . Calculate the concentration of lead ions in mol • L⁻¹. Show all work.

Molar mass of Pb = 207.2 g/mol

$$\frac{\text{mol}}{\text{L}} = \frac{325 \text{ g}}{10^{6} \text{ g}} = \frac{325 \text{ g}}{10^{6} \text{ mL}} = \frac{325 \text{ g}}{10^{3} \text{ L}} \times \frac{\text{mol}}{207.2 \text{ g}} = \frac{325 \text{ mol}}{2.07 \times 10^{5} \text{ L}} = 1.57 \times 10^{-3} \text{ M}$$

2

- 7. A calcium nitrate solution, Ca(NO₃)₂, is mixed with an ammonium sulfate solution, (NH₄)₂SO₄.
 - a. Write a **balanced** equation for this reaction. You must indicate the physical state of all participants. This will include predicting any precipitates that might form.

 $Ca(NO_3)_{2(aq)} + (NH_4)_2SO_{4(aq)} \rightleftharpoons CaSO_{4(s)} + 2 NH_4NO_{3(aq)}$

b. Write the *net ionic equation* for this reaction.

 $Ca^{2+}_{(aq)} + SO_4^{2-}_{(aq)} \rightleftharpoons CaSO_{4(s)}$

8. Write the equations for the reactions that occur when each of the following electrolytes is dissolved in water AND the solubility product expressions

Compound	Balanced Dissociation Equation	K _{sp} Expression
Ba(OH) ₂	$Ba(OH)_{2(s)} \rightleftharpoons Ba^{2+}_{(aq)} + 2 OH^{-}_{(aq)}$	K _{sp} = [Ba ²⁺][OH ⁻] ²
Na ₂ CO ₃	$Na_2CO_{3(s)} \rightleftharpoons 2 Na^+_{(aq)} + CO_3^{2-}_{(aq)}$	K _{sp} = [Na ⁺] ² [CO ₃ ²⁻]

9. At a certain temperature a saturated solution of calcium carbonate, CaCO₃, has a concentration of 7.1×10^{-5} mol • L⁻¹. Calculate the value of K_{sp} of calcium carbonate.

 $CaCO_{3} \rightleftharpoons Ca^{2+}_{(aq)} + CO_{3}^{2-}_{(aq)}$ $[CaCO_{3}] = [Ca^{2+}] = [CO_{3}^{2-}] = 7.1 \times 10^{-5} M$ $K_{sp} = [Ca^{2+}][CO_{3}^{2-}] = (7.1 \times 10^{-5})(7.1 \times 10^{-5}) = 5.04 \times 10^{-9}$

3

10. Calculate the concentrations of barium ions, Ba^{2+} , and sulfate ions, SO_4^{2-} , in a saturated aqueous solution of barium sulfate, $BaSO_4$, in which the value of K_{sp} is 1.1×10^{-10} .

BaSO₄ \rightleftharpoons Ba²⁺ + SO₄²⁻ [BaSO₄] = [Ba²⁺] = [SO₄²⁻] = x K_{sp} = [Ba²⁺] [SO₄²⁻] 1.1 × 10⁻¹⁰ = x² x = [Ba²⁺] = [SO₄²⁻] = 1.05 × 10⁻⁵ M

11. You are given a solution that contains the following anions

Ľ

You wish to separate these ions by causing one, and only one, ion to precipitate out of solution at a time. In order to do so you are provided with the following cations in solution (all are nitrate compounds):

$$Ba^{2+}$$
 Fe^{3+} Pb^{2+} .

In what order should you add these solutions in order to remove one anion at a time from the original solution, by precipitation? Give the formulas of the three precipitates that you will be forming.

	Г	CO ₃ ²⁻	SO ₄ ²⁻
Ba ²⁺	sol	ppt	ppt
Fe ³⁺	sol	ppt	sol
Pb ²⁺⁺	ppt	ppt	ppt

First add Fe^{3+} to form the precipitate $\text{Fe}_2(\text{CO}_3)_3$

Second add Ba^{2+} to form the precipitate $BaSO_4$

Third add Pb^{2+} to form the precipitate PbI_2