Chemistry 30
Solutions
I. Multiple Choice

20

1. A
2. B
3. A
4. B
5. C
6. B
7. A
8. C
9. C
10. A
11. D
12. B
13. D
14. B
15. B
16. B

II. Short Answer

1. Calculate the concentration (molarity) of a solution prepared by dissolving 12.00 grams of potassium chloride, KCl , in water, for a total solution volume of 250.0 mL .

Molar mass of $\mathrm{KCl}=74.6 \mathrm{~g} / \mathrm{mol}$

$$
\mathrm{M}=\frac{\mathrm{mol}}{\mathrm{~L}}=\frac{12.0 \mathrm{~g}}{1} \times \frac{\mathrm{mol}}{74.6 \mathrm{~g}} \times \frac{1}{0.250 \mathrm{~L}}=0.643 \mathrm{M}
$$

2. Calculate the mass of AgNO_{3} required to make 200 mL of 0.40 M silver nitrate solution.

Molar mass of AgNO_{3} is $169.9 \mathrm{~g} / \mathrm{mol}$

$$
\mathrm{g}=\frac{169.9 \mathrm{~g}}{\mathrm{~mol}} \times \frac{0.40 \mathrm{~mol}}{1} \times \frac{0.200 \mathrm{~L}}{1}=13.6 \mathrm{~g}
$$

3. What volume of a 1.44 M solution of potassium sulfide $\left(\mathrm{K}_{2} \mathrm{~S}\right)$ contains 113.0 g of $\mathrm{K}_{2} \mathrm{~S}$?

Molar mass of $K_{2} S=110.3 \mathrm{~g} / \mathrm{mol}$

$$
\mathrm{L}=\frac{\mathrm{L}}{1.44 \mathrm{~mol}} \times \frac{\mathrm{mol}}{110.3 \mathrm{~g}} \times \frac{113.0 \mathrm{~g}}{1}=0.712 \mathrm{~L}
$$

4. A solution is prepared by adding enough water to 5.88 g of calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$ to make a solution volume of 0.750 L .
a) Write a balanced equation for the dissociation reaction.

$$
\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}
$$

b) Calculate the concentration of the calcium hydroxide solution.

$$
\mathrm{M}=\frac{\mathrm{mol}}{\mathrm{~L}}=\frac{5.88 \mathrm{~g}}{1} \times \frac{\mathrm{mol}}{74.1 \mathrm{~g}} \times \frac{1}{0.750 \mathrm{~L}}=0.106 \mathrm{M}
$$

c) Determine the concentration of the calcium ions, Ca^{2+}, and hydroxide ions, OH^{-}.

$$
\begin{aligned}
& {\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=0.106 \mathrm{M}} \\
& {\left[\mathrm{OH}^{-}\right]=2 \times\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=0.212}
\end{aligned}
$$

5. What volume of a 2.00 M NaOH stock solution would you require in order to prepare 250 mL of a 0.600 M NaOH solution?

$$
\begin{aligned}
& \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \\
& \left(2.0 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)\left(\mathrm{V}_{1}\right)=\left(0.600 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)(0.250 \mathrm{~L}) \\
& \mathrm{V}_{1}=0.075 \mathrm{~L} \text { or } 75 \mathrm{~mL}
\end{aligned}
$$

6. A contaminated sample of water contains 325 ppm of lead ions, Pb^{2+}. Calculate the concentration of lead ions in $\mathrm{mol} \bullet \mathrm{L}^{-1}$. Show all work.

Molar mass of $\mathrm{Pb}=\mathbf{2 0 7 . 2} \mathbf{~ g} / \mathrm{mol}$

$$
\frac{\mathrm{mol}}{\mathrm{~L}}=\frac{325 \mathrm{~g}}{10^{6} \mathrm{~g}}=\frac{325 \mathrm{~g}}{10^{6} \mathrm{~mL}}=\frac{325 \mathrm{~g}}{10^{3} \mathrm{~L}} \times \frac{\mathrm{mol}}{207.2 \mathrm{~g}}=\frac{325 \mathrm{~mol}}{2.07 \times 10^{5} \mathrm{~L}}=1.57 \times 10^{-3} \mathrm{M}
$$

7. A calcium nitrate solution, $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$, is mixed with an ammonium sulfate solution, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$.
a. Write a balanced equation for this reaction. You must indicate the physical state of all participants. This will include predicting any precipitates that might form.

$$
\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightleftharpoons \mathrm{CaSO}_{4(\mathrm{~s})}+2 \mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{aq})}
$$

b. Write the net ionic equation for this reaction.

$$
\mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}{ }^{2-}{ }_{(\mathrm{aq})} \rightleftharpoons \mathrm{CaSO}_{4(\mathrm{~s})}
$$

8. Write the equations for the reactions that occur when each of the following electrolytes is dissolved in water AND the solubility product expressions

Compound	Balanced Dissociation Equation	$\mathrm{K}_{\text {sp }}$ Expression
$\mathrm{Ba}(\mathrm{OH})_{2}$	$\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{~s})} \rightleftharpoons \mathrm{Ba}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}^{-}{ }_{(\mathrm{aq})}$	$\mathrm{K}_{\text {sp }}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	$\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})} \rightleftharpoons 2 \mathrm{Na}^{+}{ }_{(\text {aq) }}+\mathrm{CO}_{3}{ }^{2-}{ }_{\text {(aq) }}$	$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Na}^{+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{2}\right]$

9. At a certain temperature a saturated solution of calcium carbonate, CaCO_{3}, has a concentration of $7.1 \times 10^{-5} \mathrm{~mol}_{\bullet} \mathrm{L}^{-1}$. Calculate the value of K_{sp} of calcium carbonate.

$$
\begin{aligned}
& \mathrm{CaCO}_{3} \rightleftharpoons \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+\mathrm{CO}_{3}{ }^{2-}{ }_{(\mathrm{aq})} \\
& {\left[\mathrm{CaCO}_{3}\right]=\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{CO}_{3}{ }^{2-}\right]=7.1 \times 10^{-5} \mathrm{M}} \\
& \mathrm{~K}_{\text {sp }}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left(7.1 \times 10^{-5}\right)\left(7.1 \times 10^{-5}\right)=5.04 \times 10^{-9}
\end{aligned}
$$

10. Calculate the concentrations of barium ions, Ba^{2+}, and sulfate ions, $\mathrm{SO}_{4}{ }^{2-}$, in a saturated aqueous solution of barium sulfate, BaSO_{4}, in which the value of K_{sp} is 1.1×10^{-10}.

$$
\begin{aligned}
& \mathrm{BaSO}_{4} \rightleftharpoons \mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \\
& {\left[\mathrm{BaSO}_{4}\right]=\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{SO}_{4}^{2-}\right]=x} \\
& \mathrm{~K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right] \\
& 1.1 \times 10^{-10}=x^{2} \\
& x=\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{SO}_{4}{ }^{2-}\right]=1.05 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

11. You are given a solution that contains the following anions

$$
\mathrm{I}^{-} \quad \mathrm{CO}_{3}{ }^{2-} \quad \mathrm{SO}_{4}{ }^{2-}
$$

You wish to separate these ions by causing one, and only one, ion to precipitate out of solution at a time. In order to do so you are provided with the following cations in solution (all are nitrate compounds):

$$
\mathrm{Ba}^{2+} \quad \mathrm{Fe}^{3+} \quad \mathrm{Pb}^{2+}
$$

In what order should you add these solutions in order to remove one anion at a time from the original solution, by precipitation? Give the formulas of the three precipitates that you will be forming.

	\mathbf{I}^{-}	$\mathbf{C O}_{3}{ }^{\mathbf{2 -}}$	$\mathbf{S O}_{4}{ }^{\mathbf{2 -}}$
$\mathrm{Ba}^{\mathbf{2 +}}$	sol	ppt	ppt
$\mathrm{Fe}^{\mathbf{3 +}}$	sol	ppt	sol
$\mathbf{P b}^{\mathbf{2 +}}$	ppt	ppt	ppt

First add Fe^{3+} to form the precipitate $\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$
Second add Ba^{2+} to form the precipitate BaSO_{4}
Third add Pb^{2+} to form the precipitate Pbl_{2}

