Chemistry 30
Unit 5: Acids \& Bases
39
Assignment $2-\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}, \mathrm{K}_{\mathrm{w}}$ and pH

1. Given the following balanced ionization reactions for the following weak acids and bases, write the K_{a} or K_{b} expressions for each.

a. ascorbic acid: $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}{ }_{(\text {aq })}+\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}{ }_{(\text {(aq) }}$	$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}^{-}\right]}{\left[\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}\right]}$
b. boric acid: $\mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}(\mathrm{aq})$	$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{H}_{2} \mathrm{BO}_{3}^{-}\right]}{\left[\mathrm{H}_{3} B \mathrm{BO}_{3}\right]}$
c. methyl amine: $\mathrm{CH}_{3} \mathrm{NH}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}{ }_{(a q)}+\mathrm{OH}^{-}(\mathrm{aq})$	$\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}$

2 2. Calculate $\left[\mathrm{OH}^{-}\right]$is a solution containing 100.0 g of potassium hydroxide in 2.50 L solution. Potassium hydroxide is a strong base.

The molar mass of KOH is $56.1 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& {[\mathrm{KOH}]=\frac{\mathrm{mol}}{56.1 \mathrm{~g}} \times \frac{100.0 \mathrm{~g}}{1} \times \frac{1}{2.50 \mathrm{~L}}=\frac{0.713 \mathrm{~mol}}{L}=0.713 \mathrm{M}} \\
& \mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

Since KOH is a strong base, based on the balanced equation $\left[\mathrm{OH}^{-}\right]=[\mathrm{KOH}]=0.713 \mathrm{M}$

2 3. A solution is prepared in which 0.600 mole of hydrogen chloride is dissolved in enough water to make 5.80 L . Calculate the concentration of hydrogen ions in this solution.
$[\mathrm{HCl}]=\frac{0.600 \mathrm{~mol}}{5.80 L}=\frac{0.103 \mathrm{~mol}}{L}=0.103 \mathrm{M}$
$\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
Since HCl is a strong acid, based on the balanced equation $\left[\mathrm{H}^{+}\right]=[\mathrm{HCl}]=0.103 \mathrm{M}$

2 4. A solution is prepared that contains 0.0445 mole of sulfuric acid in a total solution volume of 12.1 L . Sulfuric acid typically undergoes complete ionization according to the equation:

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}
$$

Calculate $\left[\mathrm{H}^{+}\right]$. Sulfuric acid is a strong acid.

$$
\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=\frac{0.0445 \mathrm{~mol}}{12.11}=\frac{3.68 \times 10^{-3} \mathrm{~mol}}{L}=3.68 \times 10^{-3} \mathrm{M}
$$

Since $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a strong acid, based on the balanced equation $\left[\mathrm{H}^{+}\right]=2 \times\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=7.36 \times 10^{-3} \mathrm{M}$

$$
\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]=\frac{1.32 \times 10^{-2} \mathrm{~mol}}{0.875 \mathrm{~L}}=\frac{1.51 \times 10^{-2} \mathrm{~mol}}{\mathrm{~L}}=1.51 \times 10^{-2} \mathrm{M}
$$

Since $\mathrm{H}_{3} \mathrm{PO}_{4}$ is a weak acid, we must find $\left[\mathrm{H}^{+}\right]$using K_{a} for this acid:

$$
K_{a}=\frac{\left[H^{+}\right]\left[H_{2} \mathrm{PO}_{4}^{-}\right]}{\left[H_{3} \mathrm{PO}_{4}\right]} 7.0 \times 10^{-3}=\frac{(x)(x)}{\left(1.51 \times 10^{-2}\right)} \quad \begin{aligned}
x^{2} & =\left(7.0 \times 10^{-3}\right)\left(1.51 \times 10^{-2}\right) \\
& x^{2}=1.056 \times 10^{-4} \\
& x=1.02 \times 10^{-2}
\end{aligned}
$$

Answer: $\left[\mathrm{H}^{+}\right]=1.02 \times 10^{-2} \mathrm{M}$

6 Determine the pH of each of the following solutions, and tell whether the solution is acidic or basic.

Acid or Base?

a) $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=3$
Acid
b) $\left[\mathrm{H}^{+}\right]=2.5 \times 10^{-5} \mathrm{M}$
$\mathrm{pH}=4.6$
Acid
Base

4 7. Calculate both $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$for the following solutions. All are either strong acids or strong bases. Be sure to clearly identify all answers.

| a) 2.5 M NaOH | $[\mathrm{OH}]=[\mathrm{NaOH}]=2.5 \mathrm{M}$ |
| :--- | :--- | :--- |
| $\left[\mathrm{H}^{+}\right]=\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{2.5}=4.0 \times 10^{-15} \mathrm{M}$ | |
| b) 0.045 M HCl | $\left[\mathrm{H}^{+}\right]=[\mathrm{HCl}]=0.045 \mathrm{M}$ |
| $\left[\mathrm{OH}^{-}\right]=\frac{K_{w}}{\left[\mathrm{H}^{+}\right]}=\frac{1.0 \times 10^{-14}}{0.045}=2.2 \times 10^{-13} \mathrm{M}$ | |

3 8. Calculate the pH of a 0.1 M solution of sodium hydroxide, NaOH , a strong base.

Since NaOH is a strong base, and based on the balanced equation $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$

$$
\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]=0.1 \mathrm{M}
$$

Use K_{w} to find $\left[\mathrm{H}^{+}\right]: \quad\left[\mathrm{H}^{+}\right]=\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{0.1}=1.0 \times 10^{-13} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(1.0 \times 10^{-13}\right)=13$

9 a) Determine the concentration of hydrogen ions, $\left[\mathrm{H}^{+}\right]$in a solution whose pH is 5.17 .

$$
\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})=\operatorname{antilog}(-5.17)=6.8 \times 10^{-6} \mathrm{M}
$$

b) Calculate the hydroxide ion concentration, $\left[\mathrm{OH}^{-}\right]$, for this solution.

$$
[\mathrm{OH}]=\frac{K_{w}}{\left[H^{+}\right]}=\frac{1.0 \times 10^{-14}}{6.8 \times 10^{-6}}=1.5 \times 10^{-9} \mathrm{M}
$$

10. Determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution whose $\mathrm{pH}=9.22$. (Hint: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}^{+}\right]$)

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})=\operatorname{antilog}(-9.22)=6.03 \times 10^{-10} \mathrm{M}
$$

$5 \quad$ 11. A 2.67 g sample of hydrogen fluoride gas (HF) is dissolved in sufficient water to make 1.05 L of solution at $25^{\circ} \mathrm{C}$ to form an acidic solution. Hydrogen fluoride is a weak acid with $\mathrm{K}_{\mathrm{a}}=6.6 \times 10^{-4}$.

Calculate the pH of this solution.
Begin by calculating [HF]. Then use K_{a} to determine $\left[\mathrm{H}^{+}\right]$. Finally convert $\left[\mathrm{H}^{+}\right]$to pH .

The molar mass of HF is $20.0 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$[H F]=\frac{\mathrm{mol}}{20.0 \mathrm{~g}} \times \frac{2.67 \mathrm{~g}}{1} \times \frac{1}{1.05 \mathrm{~L}}=\frac{0.127 \mathrm{~mol}}{L}=0.127 \mathrm{M}$
Since HF is a weak acid, we must find $\left[\mathrm{H}^{+}\right]$using K_{a} for this acid:

$$
\begin{aligned}
& K_{a}=\frac{\left[H^{+}\right]\left[F^{-}\right]}{[H F]} \quad 6.6 \times 10^{-4}=\frac{(x)(x)}{(0.127)} \quad x^{2}=\left(6.6 \times 10^{-4}\right)(0.127) \\
& x^{2}=8.39 \times 10^{-5} \\
& x=9.16 \times 10^{-3}
\end{aligned}
$$

$\left[\mathrm{H}^{+}\right]=9.16 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(9.16 \times 10^{-3}\right)=\mathbf{2 . 0 4}$ ANSWER

5 12. The formula for ascorbic acid, better known as Vitamin C, is $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6} . \mathrm{K}_{\mathrm{a}}$ for ascorbic acid is 8.00×10^{-5}. Determine the pH of a solution prepared by dissolving a 500.0 mg vitamin C tablet in enough water to make 200.0 mL of solution.

The molar mass of $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}$ is $176.0 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
$[H F]=\frac{\mathrm{mol}}{176.0 \mathrm{~g}} \times \frac{0.500 \mathrm{~g}}{1} \times \frac{1}{0.200 \mathrm{~L}}=\frac{0.142 \mathrm{~mol}}{L}=0.142 \mathrm{M}$
Since $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}$ is a weak acid, we must find $\left[\mathrm{H}^{+}\right]$using K_{a} for this acid:

$$
K_{a}=\frac{\left[H^{+}\right]\left[C_{6} H_{7} \mathrm{O}_{6}^{-}\right]}{\left[\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}\right]} \quad 8.0 \times 10^{-5}=\frac{(x)(x)}{(0.142)} \quad \begin{aligned}
x^{2} & =\left(8.0 \times 10^{-5}\right)(0.142) \\
& x^{2}=1.14 \times 10^{-6} \\
& x=1.07 \times 10^{-3}
\end{aligned}
$$

$\left[\mathrm{H}^{+}\right]=1.07 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(1.07 \times 10^{-3}\right)=3.0$
ANSWER

