3 1. Given the following balanced ionization reactions for the following weak acids and bases, write the K_a or K_b expressions for each.

a.	ascorbic acid: $HC_6H_7O_6$ (aq) $\approx H^+(aq) + C_6H_7O_6^-(aq)$	$K_{a} = \frac{[H^{+}][C_{6}H_{7}O_{6}^{-}]}{[HC_{6}H_{7}O_{6}]}$
b.	boric acid: $H_3BO_3_{(aq)} \rightleftharpoons H^+_{(aq)} + H_2BO_3^{(aq)}$	$K_{a} = \frac{[H^{+}][H_{2}BO_{3}^{-}]}{[H_{3}BO_{3}]}$
C.	methyl amine: $CH_3NH_2 (aq) + H_2O_{(I)} \Rightarrow CH_3NH_3^{+}(aq) + OH^{-} (aq)$	$K_{b} = \frac{[CH_{3}NH_{3}^{+}][OH^{-}]}{[CH_{3}NH_{2}]}$

2. Calculate [OH⁻] is a solution containing 100.0 g of potassium hydroxide in 2.50 L solution. Potassium hydroxide is a strong base.

The molar mass of KOH is 56.1 g·mol⁻¹

$$[\mathsf{KOH}] = \frac{mol}{56.1g} \times \frac{100.0g}{1} \times \frac{1}{2.50L} = \frac{0.713mol}{L} = 0.713M$$

KOH (aq) $\rightarrow K^+$ (aq) + OH⁻(aq)

Since KOH is a strong base, based on the balanced equation [OH] = [KOH] = 0.713 M

2 3. A solution is prepared in which 0.600 mole of hydrogen chloride is dissolved in enough water to make 5.80 L. Calculate the concentration of hydrogen ions in this solution.

$$[HCI] = \frac{0.600 \,mol}{5.80L} = \frac{0.103 \,mol}{L} = 0.103 M$$
$$HCI(aq) \rightarrow H^{+}(aq) + CI^{-}(aq)$$
Since HCI is a strong acid, based on the balanced equation $[H^{+}] = [HCI] = 0.103 M$

2 4. A solution is prepared that contains 0.0445 mole of sulfuric acid in a total solution volume of 12.1 L. Sulfuric acid typically undergoes complete ionization according to the equation:

$$H_2SO_4 \rightarrow 2H^+ + SO_4^{2-}$$

Calculate $[H^+]$. Sulfuric acid is a strong acid.

$$[H_2SO_4] = \frac{0.0445 mol}{12.1L} = \frac{3.68 \times 10^{-3} mol}{L} = 3.68 \times 10^{-3} M$$

Since H_2SO_4 is a strong acid, based on the balanced equation $[H^+] = 2 \times [H_2SO_4] = 7.36 \times 10^{-3} \text{ M}$

4 5. Phosphoric acid is a **weak** acid that undergoes the following ionization reaction:

$$H_3PO_4(aq) \rightleftharpoons H^+(aq) + H_2PO_4(aq)$$

If there are 1.32×10^{-2} mole of phosphoric acid present in 875 mL of solution, calculate the concentration of hydrogen ions, H⁺, in solution. K_a for phosphoric acid is 7.0×10^{-3} .

Begin by calculating [H₃PO₄]. Then use K_a to determine [H⁺].

$$[H_{3}PO_{4}] = \frac{1.32 \times 10^{-2} \, mol}{0.875L} = \frac{1.51 \times 10^{-2} \, mol}{L} = 1.51 \times 10^{-2} \, M$$

Since $H_{3}PO_{4}$ is a **weak** acid, we must find [H⁺] using K_a for this acid:
 $K_{a} = \frac{[H^{+}][H_{2}PO_{4}^{-}]}{[H_{3}PO_{4}]}$ 7.0×10⁻³ = $\frac{(x)(x)}{(1.51 \times 10^{-2})}$ $x^{2} = (7.0 \times 10^{-3})(1.51 \times x^{2})$
 $x^{2} = 1.056 \times 10^{-4}$
 $x = 1.02 \times 10^{-2}$

- Answer: $[H^+] = 1.02 \times 10^{-2} M$
- 6 Determine the pH of each of the following solutions, and tell whether the solution is acidic or basic.

a)	$[H^+] = 1.0 \times 10^{-3} M$	pH = 3	Acid
b)	$[H^+] = 2.5 \times 10^{-5} M$	pH = 4.6	Acid
c)	[OH ⁻] = 0.01 M	pH = 12	Base

6

 10^{-2})

Acid or Base?

4 7. Calculate both [H⁺] and [OH⁻] for the following solutions. All are either strong acids or strong bases. Be sure to clearly identify all answers.

a) 2.5 M NaOH	[OH ⁻] = [NaOH] = 2.5 M
	$[H^+] = \frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{2.5} = 4.0 \times 10^{-15} M$
b) 0.045 M HCI	[H ⁺] = [HCI] = 0.045 M
	$[OH^{-}] = \frac{K_{w}}{[H^{+}]} = \frac{1.0 \times 10^{-14}}{0.045} = 2.2 \times 10^{-13} M$

3 8. Calculate the pH of a 0.1 M solution of sodium hydroxide, NaOH, a strong base.

Since NaOH is a strong base, and based on the balanced equation NaOH \rightarrow Na⁺ + OH⁻ [OH⁻] = [NaOH] = 0.1 M Use K_w to find [H⁺]: [H⁺] = $\frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{0.1} = 1.0 \times 10^{-13} M$ pH = -log[H⁺] = - log (1.0 × 10⁻¹³) = 13

9 a) Determine the concentration of hydrogen ions, $[H^+]$ in a solution whose pH is 5.17.

 $[H^{+}]$ = antilog (-pH) = antilog (-5.17) = 6.8×10^{-6} M

b) Calculate the hydroxide ion concentration, [OH⁻], for this solution.

$$[OH^{-}] = \frac{K_{w}}{[H^{+}]} = \frac{1.0 \times 10^{-14}}{6.8 \times 10^{-6}} = 1.5 \times 10^{-9} M$$

10. Determine $[H_3O^+]$ in a solution whose pH = 9.22. (Hint: $[H_3O^+] = [H^+]$)

1

1

1

 $[H_3O^+]$ = antilog (-pH) = antilog (-9.22) = 6.03×10^{-10} M

5 11. A 2.67 g sample of hydrogen fluoride gas (HF) is dissolved in sufficient water to make 1.05 L of solution at 25°C to form an acidic solution. Hydrogen fluoride is a weak acid with $K_a = 6.6 \times 10^{-4}$.

Calculate the pH of this solution.

Begin by calculating [HF]. Then use K_a to determine [H⁺]. Finally convert [H⁺] to pH.

The molar mass of HF is 20.0 g· mol⁻¹ $[HF] = \frac{mol}{20.0g} \times \frac{2.67g}{1} \times \frac{1}{1.05L} = \frac{0.127 \, mol}{L} = 0.127 M$ Since HF is a **weak** acid, we must find [H⁺] using K_a for this acid: $K_a = \frac{[H^+][F^-]}{[HF]} \qquad \textcircled{OP} \qquad 6.6 \times 10^{-4} = \frac{(x)(x)}{(0.127)} \qquad \textcircled{OP} \qquad x^2 = (6.6 \times 10^{-4})(0.127) \\ x^2 = 8.39 \times 10^{-5} \\ x = 9.16 \times 10^{-3} \\ [H^+] = 9.16 \times 10^{-3} \\ M$ pH = -log[H⁺] = -log(9.16 \times 10^{-3}) = **2.04** ANSWER

5 12. The formula for ascorbic acid, better known as Vitamin C, is $HC_6H_7O_6$. K_a for ascorbic acid is 8.00×10^{-5} . Determine the pH of a solution prepared by dissolving a 500.0 mg vitamin C tablet in enough water to make 200.0 mL of solution.