Chemistry 30
Unit 5: Acids \& Bases
Assignment 3 - Neutralization and Titration
16 max

3

1. The substances listed in the chart below were tested with indictors methyl red, phenol red, and thymol blue. Complete the chart indicating what colors would be seen with each indicator.

	methyl red	phenol red	thymol blue
acid rain $(\mathbf{p H}=6.3)$	yellow	yellow	yellow
ammonia water $(\mathrm{pH}=\mathbf{1 1 . 2})$	yellow	red	blue

3 2. Write balanced neutralization reactions for the following:
a. the reaction between hydrobromic acid, HBr , and potassium hydroxide, KOH .

$$
\mathrm{HBr}+\mathrm{KOH} \rightarrow \mathrm{KBr}+\mathrm{H}_{2} \mathrm{O}
$$

b. the reaction between nitric acid, HNO_{3} and magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$

$$
2 \mathrm{HNO}_{3}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

c. the reaction between phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$ and sodium hydroxide, NaOH

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{NaOH} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O} \quad \text { (different answers are possible) }
$$

2 3. What is the molarity of a 25 mL solution of HCl that is titrated to an end point by 10 mL of a 0.200 M solution of NaOH ?

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \\
\mathrm{M}_{\mathrm{A}}=\mathrm{M}_{\mathrm{A}} \\
\mathrm{~V}_{\mathrm{A}}=25 \quad \mathrm{M}_{\mathrm{B}}=0.200 \\
\mathrm{~V}_{\mathrm{B}}=10
\end{array} \\
& \mathrm{M}_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}}=\mathrm{M}_{\mathrm{B}} \mathrm{~V}_{\mathrm{B}} \\
& \mathrm{M}_{\mathrm{A}}(\mathbf{2 5})=(\mathbf{0 . 2 0 0})(\mathbf{1 0}) \\
& \mathrm{M}_{\mathrm{A}}=0.0800 \mathrm{M}=[\mathrm{HCl}]
\end{aligned}
$$

answer: $[\mathrm{HCl}]=0.0800 \mathrm{M}$

2 4. What is the molar concentration of a $50-\mathrm{mL}$ solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ that is titrated to an end point by 15 mL of a 0.00300 M solution of HCl ?

$$
\begin{aligned}
& 2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{M}_{\mathrm{A}}=0.00300 \quad \mathrm{M}_{\mathrm{B}}=\mathrm{M}_{\mathrm{B}} \\
& \mathrm{~V}_{\mathrm{A}}=15 \\
& \mathrm{~V}_{\mathrm{B}}=50 \\
& \\
& \mathrm{M}_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}}=2 \mathrm{M}_{\mathrm{B}} \mathrm{~V}_{\mathrm{B}} \\
& \\
& \\
& \\
& (0.00300)(15)=2\left(\mathrm{M}_{\mathrm{B}}\right)(50) \\
& \mathrm{M}_{\mathrm{B}}=4.5 \times 10^{-4} \mathrm{M}
\end{aligned} \quad \text { answer }
$$

5. What is the molarity of a 21 mL nitric acid solution that completely neutralizes 25.0 mL of a 0.300 M solution of NaOH ?
$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\begin{array}{ll}
M_{A}=M_{A} & M_{B}=0.300 \\
V_{A}=21 & V_{B}=25.0
\end{array}
$$

$$
M_{A} V_{A}=M_{B} V_{B}
$$

$$
\left(\mathrm{M}_{\mathrm{A}}\right)(21)=(0.300)(25.0)
$$

$$
\mathrm{M}_{\mathrm{A}}=0.357 \mathrm{M}
$$

Answer: $\left[\mathrm{HNO}_{3}\right]=0.357 \mathrm{M}$

2 6. What is the molar concentration of a 45.0 mL solution of KOH that is completely neutralized by 15.0 mL of a $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{M}_{\mathrm{A}}=0.500 \quad \mathrm{M}_{\mathrm{B}}=\mathrm{M}_{\mathrm{B}} \\
& \mathrm{~V}_{\mathrm{A}}=15 \quad \mathrm{~V}_{\mathrm{B}}=\mathbf{4 5} \\
& \mathrm{M}_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}}=\mathbf{2} \mathrm{M}_{\mathrm{B}} \mathrm{~V}_{\mathrm{B}} \\
& \mathbf{(0 . 5 0 0) (1 5) = 2 (\mathbf { M } _ { \mathrm { B } }) (4 5)} \\
& \mathbf{M}_{\mathrm{B}}=\mathbf{0 . 3 3 3} \mathbf{~ M}
\end{aligned}
$$

Answer: $[\mathrm{KOH}]=0.333 \mathrm{M}$
7. A neutral solution is produced when 42.00 mL of a 0.150 M NaOH solution is used to titrate 50.00 mL of a sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ solution. What is the concentration of the sulfuric acid solution before titration?

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{M}_{\mathrm{A}}=\mathrm{M}_{\mathrm{A}} \quad \mathrm{M}_{\mathrm{B}}=\mathbf{0 . 1 5 0} \\
& \mathrm{V}_{\mathrm{A}}=50.00 \quad \mathrm{~V}_{\mathrm{B}}=\mathbf{4 2 . 0 0} \\
& 2 \mathrm{M}_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}}=\mathrm{M}_{\mathrm{B}} \mathrm{~V}_{\mathrm{B}} \\
& \mathbf{2}\left(\mathrm{M}_{\mathrm{A}}\right)(\mathbf{5 0})=\mathbf{2 (0 . 1 5 0) (\mathbf { 4 2 . 0 0 })} \\
& \mathrm{M}_{\mathrm{A}}=0.063 \mathrm{M}
\end{aligned}
$$

Answer: $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=0.063 \mathrm{M}$

