\qquad
Chemistry 30
Unit 5: Acids \& Bases
Assignment $2-\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}, \mathrm{K}_{\mathrm{w}}$ and pH

1. Given the following balanced ionization reactions for the following weak acids and bases, write the K_{a} or K_{b} expressions for each.
a. ascorbic acid: $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}{ }_{(\mathrm{aq})}{ }^{\circ} \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}{ }^{-}{ }_{(\mathrm{aq})}$
$\mathrm{K}_{\mathrm{a}}=$
b. boric acid: $\mathrm{H}_{3} \mathrm{BO}_{3(\mathrm{aq})}{ }^{\mathrm{o}} \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}{ }_{(\mathrm{aq})} \quad \mathrm{K}_{\mathrm{a}}=$
c. methyl amine: $\mathrm{CH}_{3} \mathrm{NH}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \cong \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} \quad \mathrm{K}_{\mathrm{b}}=$
2. Calculate $\left[\mathrm{OH}^{-}\right]$is a solution containing 100.0 g of potassium hydroxide in 2.50 L solution. Potassium hydroxide is a strong base.
3. A solution is prepared in which 0.600 mole of hydrogen chloride is dissolved in enough water to make 5.80 L . Calculate the concentration of hydrogen ions in this solution.
\qquad
4. A solution is prepared the contains 0.0445 mole of sulfuric acid in a total solution volume of 12.1 L . Sulfuric acid typically undergoes complete ionization according to the equation:

$$
\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}
$$

Calculate $\left[\mathrm{H}^{+}\right]$. Sulfuric acid is a strong acid.
5. Phosphoric acid is a weak acid that undergoes the following ionization reaction:

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})
$$

If there are 1.32×10^{-2} mole of phosphoric acid present in 875 mL of solution, calculate the concentration of hydrogen ions, H^{+}, in solution. K_{a} for phosphoric acid is 7.0×10^{-3}.

Begin by calculating $\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]$. Then use K_{a} to determine $\left[\mathrm{H}^{+}\right]$.

6 Determine the pH of each of the following solutions, and tell whether the solution is acidic or basic.
Acid or Base?
a) $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=$ \qquad
b) $\left[\mathrm{H}^{+}\right]=2.5 \times 10^{-5} \mathrm{M}$
c) $\left[\mathrm{OH}^{-}\right]=0.01 \mathrm{M}$

$$
\mathrm{pH}=
$$

\qquad
7. Calculate both $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$for the following solutions. All are either strong acids or strong bases. Be sure to clearly identify all answers.
a) 2.5 M NaOH
b) 0.045 M HCl

8 Calculate the pH of a 0.1 M solution of sodium hydroxide, NaOH , a strong base. Hint: First find $\left[\mathrm{OH}^{-}\right]$. Use this to find $\left[\mathrm{H}^{+}\right]$which you then convert to pH

9 a) Determine the concentration of hydrogen ions, $\left[\mathrm{H}^{+}\right]$in a solution whose pH is 5.17 .
b) Calculate the hydroxide ion concentration, $\left[\mathrm{OH}^{-}\right]$, for this solution.
10. Determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution whose $\mathrm{pH}=9.22$. (Hint: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}^{+}\right]$)

Name:
11. A 2.67 g sample of hydrogen fluoride gas (HF) is dissolved in sufficient water to make 1.05 L of solution at $25^{\circ} \mathrm{C}$ to form an acidic solution. Hydrogen fluoride is a weak acid with $\mathrm{K}_{\mathrm{a}}=6.6 \times 10^{-4}$.

Calculate the pH of this solution.
Begin by calculating $[\mathrm{HF}]$. Then use K_{a} to determine $\left[\mathrm{H}^{+}\right]$. Finally convert $\left[\mathrm{H}^{+}\right]$to pH .
12. The formula for ascorbic acid, better known as Vitamin C, is $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}$. K_{a} for ascorbic acid is 8.00×10^{-5}. Determine the pH of a solution prepared by dissolving a 500.0 mg vitamin C tablet in enough water to make 200.0 mL of solution.

