Name:	Date:
-------	-------

Chemistry 30 Unit Exam

Acids & Bases

70 total

I. Multiple Choice

20 marks

You will need to refer to a table of Relative Strengths of Acids & Bases for some questions.

- 1. Among the following, the weakest acid is:
 - A. hydrochloric acid
- B. sulfuric acid
- C. nitric acid
- D. acetic acid
- 2. A Brønsted-Lowry base can be defined as:
 - A. a hydroxide ion (OH⁻) donor
 - B. a proton (H⁺) donor
 - C. a proton (H⁺) acceptor
 - D. a hydroxide ion (OH⁻) acceptor
- 3. The hydronium ion is best represented as:
 - A. H

- B. H⁺
- C. H₃O⁻
- $D. \ H_3O^{^+}$
- 4. A certain solution has a pH of 8. How is this solution best described?
 - A. strongly basic
- B. weakly basic
- C. strongly acidic
- D. weakly acidic
- 5. Mixtures of chemicals that make a solution resistant to a change in pH are known as:
 - A. amphoteric
- B. indicators
- C. electrolytes
- D. buffers
- 6. The conjugate base of H₂CO₃ is:
 - A. H₂O
- B. CO₃²
- C. HCO₃
- D. CO₂

- 7. Which of the following statements is TRUE concerning a 0.10 M HCl solution and a 0.10 M CH₃COOH (acetic acid) solution?
 - A. The concentration of $H^+_{(aq)}$ in both solutions is 1.0×10^{-1} .
 - B. The HCl solution almost totally ionizes while the CH₃COOH does not.
 - C. They are both considered to be strong acids.
 - D. The HCl solution will turn litmus red, while the CH₃COOH solution will not.
- 8. The hydronium ion concentration, [H₃O⁺], of a 0.015 M aqueous HNO₃ solution is:
 - A. 0.015 M
- B. 0.030 M
- C. $3.3 \times 10^{-13} \text{ M}$
- D. 1.5
- 9. Consider the following acid-base reaction:

$$HF_{(aq)} + HCO_{3(aq)} \rightleftharpoons F_{(aq)} + H_2CO_{3(aq)}$$

The substances acting like bases are:

- A. HF and F
- B. HCO₃ and F
- C. HF and H₂CO₃
- D. HCO₃ and H₂CO₃
- 10. The pH of a solution in which

$$[H^+] = 1.5 \times 10^{-5}$$
 is:

A. 1.5

B. 10

C. 4.8

D. 9.2

- 11. HCN is a weak acid, with a $K_a = 4.0 \times 10^{-10}$. In a 1.0 M solution, which of the following species will be present in the greatest concentration?
 - A. H⁺
- B. CN
- C. HCN
- D. both H⁺ and CN⁻
- 12. If a solution has a pH of 3, then the concentration of hydrogen ions, H⁺ is:
 - A. $1.0 \times 10^{-3} \text{ M}$
- B. $1.0 \times 10^{-11} \text{ M}$
- C. $1.0 \times 10^{3} \, \text{M}$
- D. $1.0 \times 10^{-14} \,\mathrm{M}$
- 13. Which of the following acids is the strongest? All are 1.0 M.
 - A. HF
- $K_a = 6.7 \times 10^{-4}$
- B. H₃PO₄
- $K_a = 7.1 \times 10^{-3}$
- C. CH₃CO₂H
- $K_a = 1.8 \times 10^{-5}$
- D. H₂CO₃
- $K_a = 4.4 \times 10^{-7}$
- 14. What substances are acting as acids in this equilibrium reaction:

$$CN^{-} + H_2O \rightleftharpoons HCN + OH^{-}$$

- A. CN⁻, H₂O
- B. H₂O, HCN
- C. CN⁻, OH⁻
- D. H₂O, OH⁻
- 15. A solution in which the hydroxide ion concentration is 1.0×10^{-4} is:
 - A. acidic
- B. basic
- C. neutral
- D. amphoteric

- 16. If $[H^{+}]$ in a solution is 1.0×10^{-1} M, then $[OH^{-}]$ is:
 - A. $1.0 \times 10^{-1} \text{ M}$
- B. $1.0 \times 10^{-15} \,\mathrm{M}$
- C. $1.0 \times 10^{-13} \text{ M}$
- D. $1.0 \times 10^{-7} \text{ M}$
- 17. A 0.001 M solution of an acid that ionizes only slightly in solution would be termed:
 - A. concentrated and weak
 - B. strong and dilute
 - C. dilute and weak
 - D. concentrated and strong
- 18. Which of the following statements is **TRUE**?
 - A. Bases turn litmus red and taste sour.
 - B. Acids form electrolytic solutions, but bases do not.
 - C. Bases are proton donors and react with active metals to produce hydrogen gas.
 - D. A strong acid almost totally ionizes, while a weak acid only partially ionizes.
- 19. Normal rain water is slightly acidic. If a sample of rain water has a hydroxide ion concentration [OH] of 1.6 × 10⁻⁸ M, the [H⁺] in that sample is:
 - A. 1.6×10^{-8}
- B. 8.4×10^{-6}
- C. 4.5×10^{-7}
- D. 6.3×10^{-7}
- 20. In the neutralization reaction involving reactants $H^{+}_{(aq)} + Cl^{-}_{(aq)} + Na^{+}_{(aq)} + OH^{-}_{(aq)}$, the spectator ions are:
 - A. H⁺ and Cl⁻
- B. H⁺ and Na⁺
- C. Na⁺ and Cl⁻
- D. Cl and OH

II. Short Answer

50

Be sure to complete all parts to each question and to clearly identify the final answer. **Do not lose significant figures part-way through a calculation**.

2

2. Write the K_a expressions for each of these acids. Assume that only one hydrogen is ionized.

1. Determine [H⁺] in a 0.02 M solution of perchloric acid, HClO₄. Perchloric acid is a very strong acid.

2

a) hydrofluoric acid, HF

b) formic acid, HCHO₂

3. Calculate the pH for the following solutions. Read the information provided carefully. Identify each as acidic, basic, or neutral.

8

рΗ

acid, base, or neutral

a) $[H^+] = 1.0 \times 10^{-10}$

b) $[OH^{-}] = 1.0 \times 10^{-10}$

d) $[H^+] = 1.0 \times 10^{-5}$

c) $[OH^{-}] = 1.0 \times 10^{-1}$

4. a) Calculate the hydrogen-ion concentration $[H^{+}]$ for an aqueous solution in which [OH] is 1.0×10^{-11} M.

3

b) Is the solution acid, basic, or neutral?

3

5. Calculate [H⁺] in a 0.005 M solution of NaOH_(aq).

6.	A s	A student dissolves 250 g of hydrofluoric acid, HF, in enough water to make one litre of solution.		
	a)	Calculate the concentration of this solution in mol*L ⁻¹ .	2	
	b)	Calculate [H $^{+}$] for this solution, given that K_a for hydrofluoric acid is 6.7×10^{-4} .	3	
		Begin by writing a balanced equation.		
	c)	Determine [OH] for this solution.	2	
	d)	Determine the pH of this solution.	1	
7. Hydrosulfuric acid, H_2S , is a weak acid with $K_a = 9.5 \times 10^{-8}$. This acid ionizes as follows:				
		$H_2S \rightleftharpoons H^+ + HS^-$		
	Det	termine the pH of a 0.25 M solution of this acid. (Hint: $[H_2S] = 0.25$ M. Find $[H^+]$)	4	

8.	Ca(OH) ₂ is a strong base. Determine the pH of a 0.11 M solution of Ca(OH) ₂ .	4
	(Hints: $[Ca(OH)_2] = 0.11$. Begin by finding $[OH^-]$)	
9.	Determine each of the following:	3
	a) Find [H ⁺] of a solution whose pH is 8.3	
	b) Find [H ⁺] in a solution with a pOH of 3.75	
	c) Calculate [OH] in a solution with a pH of 9.2	
10.	. Determine the concentration of a solution of KOH for which the pH is 11.89. KOH is a strong base.	3

11.	A 0.24 M solution of the weak acid H ₂ CO ₃ has a pH of 3.49.	Determine K _a for H ₂ CO ₃ .
	H ₂ CO ₃ dissociates according to:	

4

$$H_2CO_3$$
 (aq) \rightleftharpoons H^+ (aq) + HCO_3 (aq)

12. A neutral solution is produced when 41.32 mL of a 0.1077 M HCl solution was used to titrate 50.00 mL of a NaOH solution. Calculate the concentration of the sodium hydroxide solution before titration.

3

13. A 30.0 mL sample of sulfuric acid, H₂SO₄, is titrated to an end point with 90.0 mL of 0.40 M NaOH. What is the concentration of the sulfuric acid?