Ι.	Multi	ple Choice			20
	1. D	6.	С	11. C	16. C
	2. C	7.	В	12. A	17. C
	3. D	8.	A	13. B	18. D
	4. B	9.	В	14. B	19. D
	5. D	10	. C	15. B	20. C

II. Short Answer

1. Determine [H⁺] in a 0.02 M solution of perchloric acid, HClO₄. Perchloric acid is a very strong acid.

$$[H^+] = [HCIO_4] = 0.02 \text{ M}$$

2. Write the K_a expressions for each of these acids. Assume that only one hydrogen is ionized. 2

b) formic acid, HCHO₂

- $K_{a} = \frac{[H^{+}][F^{-}]}{[HF]}$ $K_{a} = \frac{[H^{+}][CHO_{2}^{-}]}{[HCHO_{2}]}$
- 3. Calculate the pH for the following solutions. Read the information provided carefully. Identify each as acidic, basic, or neutral.

		рН		acid, base, or neutral
a) [ŀ	$H^{+}] = 1.0 \times 10^{-10}$	10		В
b) [C	$OH^{-}] = 1.0 \times 10^{-10}$	4		А
c) [(OH ⁻] = 1.0 × 10 ⁻¹	13		В
d) [H	H⁺] = 1.0 ×10 ⁻⁵	5	-	A
			-	

4. a) Calculate the hydrogen-ion concentration [H⁺] for an aqueous solution in which [OH⁻] is 1.0×10^{-11} M.

 $[H^+] = 1 \times 10^{-3} M$

b) Is the solution acid, basic, or neutral?

acidic

2

6. Calculate [H⁺] in a 0.005 M solution of NaOH_(aq).

$$[\mathrm{H^{+}}] = \frac{1 \times 10^{-14}}{0.005} = 2 \times 10^{-12} \mathrm{M}$$

- 7. A student dissolves 250 g of hydrofluoric acid, HF, in enough water to make one litre of solution.
 - a) Calculate the concentration of this solution in $mol \cdot L^{-1}$.

$$[HF] = \frac{250 \text{ g}}{1} \times \frac{\text{mol}}{20.0 \text{ g}} \times \frac{1}{1 \text{ L}} = 12.5 \text{ M}$$

b) Calculate $[H^+]$ for this solution, given that K_a for hydrofluoric acid is 6.7×10^{-4} . **3** Begin by writing a balanced equation.

$$K_{A} = \frac{[H^{+}][F^{-}]}{[HF]}$$
 $6.7 \times 10^{-4} = \frac{x^{2}}{12.5}$ $x = [H^{+}] = 0.0915$ M

c) Determine [OH⁻] for this solution.

$$[OH^{-}] = \frac{1 \times 10^{-14}}{0.915} = 1.09 \times 10^{-13} M$$

d) Determine the pH of this solution.

$$pH = -log(0.0915) = 1.04$$

7. Hydrosulfuric acid, H₂S, is a weak acid with $K_a = 9.5 \times 10^{-8}$. This acid ionizes as follows:

$$H_2S \rightleftharpoons H^+ + HS^-$$

Determine the pH of a 0.25 M solution of this acid. (Hint: $[H_2S] = 0.25$ M. Find $[H^+]$) 4

$$K_{A} = \frac{[H^{+}][HS^{-}]}{[H_{2}S]} \qquad 9.5 \times 10^{-8} = \frac{x^{2}}{0.25} \qquad x = [H^{+}] = 1.54 \times 10^{-4} M$$

 $pH = -log(1.54 \times 10^{-4}) = 3.8$

2

3

Ca(OH)₂ is a strong base. Determine the pH of a 0.11 M solution of Ca(OH)₂.
(Hints: [Ca(OH)₂] = 0.11. Begin by finding [OH⁻])

$$[OH^{-}] = 2 \times 0.11 \text{ M} = 0.22 \text{ M}$$

$$[\mathrm{H^{+}}] = \frac{1 \times 10^{-14}}{0.22} = 4.5 \times 10^{-14} \mathrm{M}$$

 $pH = -log(4.5 \times 10^{-14}) = 13.3$

- 9. Determine each of the following:
 - a) Find $[H^+]$ of a solution whose pH is 8.3

$$[H^+] = antilog(-8.3) = 5.01 \times 10^{-9} M$$

b) Find $[H^+]$ in a solution with a pOH of 3.75

$$pH = 14 - pOH = 10.25$$
 $[H^+] = antilog(-10.25) = 5.62 \times 10^{-11} M$

c) Calculate [OH] in a solution with a pH of 9.2

$$pOH = 14 - pH = 4.8$$
 [OH] = antilog(-4.8) = 1.6×10^{-5} M

 $[OH^{-}] = 7.762 \times 10^{-3} \text{ M} = [KOH]$

10. Determine the concentration of a solution of KOH for which the pH is 11.89. KOH is a strong base.

3

or

 $[H^+]$ = antilog(-11.89) = 1.29 × 10⁻¹² M

pOH = 14 - pH = 2.11

$$[OH^{-}] = \frac{1 \times 10^{-14}}{1.29 \times 10^{-12}} = 7.762 \times 10^{-3} M = [KOH]$$

4

4

11. A 0.24 M solution of the weak acid H_2CO_3 has a pH of 3.49. Determine K_a for H_2CO_3 . H_2CO_3 dissociates according to:

$$H_2CO_3_{(aq)} \rightleftharpoons H^+_{(aq)} + HCO_3^-_{(aq)}$$

 $[H^+] = antilog(-3.49) = 3.24 \times 10^{-4} M$ This is also $[HCO_3^-]$

$$K_{A} = \frac{[H^{+}][HCO_{3}^{-}]}{[H_{2}CO_{3}]} = \frac{(3.24 \times 10^{-4})(3.24 \times 10^{-4})}{0.24} = 4.36 \times 10^{-7}$$

12. A neutral solution is produced when 41.32 mL of a 0.1077 M HCl solution was used to titrate 50.00 mL of a NaOH solution. Calculate the concentration of the sodium hydroxide solution before titration.

HCI + NaOH → NaCI + H₂O $M_AV_A = M_BV_B$ (0.1077)(41.32) = M_B (50.00) $M_B = 0.0890$ M

13. A 30.0 mL sample of sulfuric acid, H₂SO₄, is titrated to an end point with 90.0 mL of 0.40 M NaOH.
What is the concentration of the sulfuric acid?
3

$$\begin{split} H_2 SO_4 + 2 \; NaOH &\to Na_2 SO_4 + 2 \; H_2 O \\ \\ 2 M_A V_A &= M_B V_B \\ \\ 2 (M_A)(30) &= (0.40)(90.0) \\ \\ M_A &= 0.600 \; M \end{split}$$

Chemical Kinetics Exam Key

Page 4 of 4