1. Calculate $\left[\mathrm{H}^{+}\right]$in a 2.00 L solution of hydrogen chloride in which 3.65 g of HCl is dissolved. K_{a} for HCl is very large.

We will need to know the concentration of the acid, HCl .
Concentration is measured as molarity which has the units $\frac{\mathrm{mol}}{\mathrm{L}}$
Since the question tells us the mass of HCl in grams, we will need to convert grams to moles. To do so we need to know the molar mass of HCl .

Unit analysis may be used to calculate the concentration of the acid solution:

$$
[\mathrm{HCl}]=3.65 \mathrm{~g} \times \frac{\mathrm{mol}}{36.5 \mathrm{~g}} \times \frac{1}{2.00 \mathrm{~L}}=0.05 \mathrm{M}
$$

Next write a balanced equation:

$$
\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-}
$$

Since HCl is a strong acid, it breaks down completely into ions. BECAUSE OF THIS, since there is a $1: 1$ relationship between HCl and H^{+}, the $[\mathrm{HCl}]$ will equal the $\left[\mathrm{H}^{+}\right]$:

$$
\left[\mathrm{H}^{+}\right]=[\mathrm{HCl}]=0.05 \mathrm{M}
$$

Answer

2. Calculate $\left[\mathrm{H}^{+}\right]$in a solution containing 3.20 g of HNO_{3} in 250 mL of solution. Nitric acid is a very strong acid.

This is a similar question - again we need to find $\left[\mathrm{H}^{+}\right]$for a strong acid. Begin by calculating the concentration of the acid solution.

This will involve converting grams HNO_{3} into moles HNO_{3} :

Unit analysis may be used to calculate the concentration of the acid solution:

$$
\left[\mathrm{HNO}_{3}\right]=3.20 \mathrm{~g} \times \frac{\mathrm{mol}}{63.0 \mathrm{~g}} \times \frac{1}{0.250 \mathrm{~L}}=0.203 \mathrm{M}
$$

Next write a balanced equation: $\quad \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
Since HNO_{3} is a strong acid, it breaks down completely into ions. BECAUSE OF THIS, since there is a $1: 1$ relationship between HNO_{3} and H^{+}, the concentration of HNO_{3} will equal the concentration of H^{+}:
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{HNO}_{3}\right]=0.203 \mathrm{M}$

Answer

3. An acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ solution is 0.25 M . Given that K_{a} for acetic acid is 1.8×10^{-5}, find $\left[\mathrm{H}^{+}\right]$.

The question gives us the concentration of the acid (0.25 M), so we may begin by writing a balanced equation. We need this in order to set up the K_{a} expression.

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})
$$

Because this is a weak acid, $\left[\mathrm{H}^{+}\right]$WILL NOT EQUAL $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$.
We will need to use the K_{a} expression to find $\left[\mathrm{H}^{+}\right]$:

Set up the equation based on the balanced equation:

$$
K_{a}=\frac{\left[H^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[H \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}
$$

Substitute in known values, and let the unknown values = x :

$$
1.8 \times 10^{-5}=\frac{[x][x]}{[0.25]}
$$

Rearrange the equation

$$
x^{2}=\left(1.8 \times 10^{-5}\right)(0.25)
$$

$$
x^{2}=4.5 \times 10^{-6}
$$

Take the square root to find $\mathrm{x}: \quad \sqrt{ } \mathrm{x}^{2}=\sqrt{ } 4.5 \times 10^{-6}$

$$
\begin{aligned}
& x=\left[\mathrm{H}^{+}\right]=2.1 \times 10^{-3} \quad \text { Answer } \\
& \text { also }\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]=2.1 \times 10^{-3}
\end{aligned}
$$

4. A solution of acetic acid contains 12.0 g of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ in 500 mL of solution. Calculate $\left[\mathrm{H}^{+}\right]$.

We will need to know the concentration of the acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
Since the question tells us the mass of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ in grams, we will need to convert grams to moles. To do so we need to know the molar mass of $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$.

element	Molar Mass $(\mathrm{g} / \mathrm{mol})$	\times	No. Atoms	
H	1.0	\times	4	
C	12.0	\times	2	
O	16.0	\times	2	
Molar Mass compound (g/mol)				$=$

Unit analysis may be used to calculate the concentration of the acid solution:

$$
\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=12.0 \mathrm{~g} \times \frac{\mathrm{mol}}{60.0 \mathrm{~g}} \times \frac{1}{0.500 \mathrm{~L}}=0.400 \mathrm{M}
$$

Next we need a balanced equation which will be needed in order to set up the K_{a} expression.

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})
$$

Because this is a weak acid, $\left[\mathrm{H}^{+}\right]$WILL NOT EQUAL $\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]$.
We will need to use the K_{a} expression to find $\left[\mathrm{H}^{+}\right] . \mathrm{K}_{\mathrm{a}}$ for this acid was given in the previous question or can be found in the Table of Acid Strengths:

Set up the equation based on the balanced equation:

$$
K_{a}=\frac{\left[H^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}
$$

Substitute in known values, and let the unknown values $=x$:
$1.8 \times 10^{-5}=\frac{[x][x]}{[0.400]}$
Rearrange the equation

$$
x^{2}=\left(1.8 \times 10^{-5}\right)(0.400)
$$

$$
x^{2}=7.2 \times 10^{-6}
$$

Take the square root to find $\mathrm{x}: \quad \sqrt{ } \mathrm{x}^{2}=\sqrt{ } 7.2 \times 10^{-6}$

$$
\mathrm{x}=\left[\mathrm{H}^{+}\right]=2.7 \times 10^{-3}
$$

Answer
also $\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]=2.7 \times 10^{-3}$
5. Calculate $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$at $25^{\circ} \mathrm{C}$ in:
a. a 5.0 M NaOH solution. NaOH is a strong base.

Begin with a balanced equation: $\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{Na}^{+}{ }_{\text {(aq) }}+\mathrm{OH}^{-}{ }_{(\text {aq) }}$
Since this is a strong base and there is a $1: 1$ ratio between NaOH and OH^{-},

$$
[\mathrm{OH}]=[\mathrm{NaOH}]=5.0 \mathrm{M} \quad \text { first part of the answer }
$$

$$
\text { Find }\left[\mathrm{H}^{+}\right] \text {using } \mathrm{K}_{\mathrm{w}}: \quad \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

Rearrange this equation to find the unknown; in this case $\left[\mathrm{H}^{+}\right]$:

$$
\left[\mathrm{H}^{+}\right]=\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]}
$$

Substitute in values and solve for $\left[\mathrm{H}^{+}\right]: \quad\left[H^{+}\right]=\frac{1.0 \times 10^{-14}}{[5.0]}$
K_{w} will always equal 1.0×10^{-14}

$$
\left[\mathrm{H}^{+}\right]=2.0 \times 10^{-15} \mathrm{M}
$$

answer
b. a $0.025 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution. $\mathrm{Ca}(\mathrm{OH})_{2}$ is a strong base.

Begin with a balanced equation: $\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow \mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
Since this is a strong base and there is a $1: 2$ ratio between $\mathrm{Ca}(\mathrm{OH})_{2}$ and OH^{-},

$$
[\mathrm{OH}]=2 \times\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=2 \times 0.025=0.050 \mathrm{M} \quad \text { first part of the answer }
$$

Find $\left[\mathrm{H}^{+}\right]$using $\mathrm{K}_{\mathrm{w}}: \quad \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right][\mathrm{OH}]=1.0 \times 10^{-14}$
Rearrange this equation to find the unknown; in this case $\left[\mathrm{H}^{+}\right]$:

$$
\left[\mathrm{H}^{+}\right]=\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]}
$$

Substitute in values and solve for $\left[\mathrm{H}^{+}\right]: \quad\left[H^{+}\right]=\frac{1.0 \times 10^{-14}}{[0.050]}$
K_{w} will always equal 1.0×10^{-14}
$\left[\mathrm{H}^{+}\right]=2.0 \times 10^{-13} \mathrm{M}$
answer
c. a 0.10 M HCl solution. HCl is a strong acid

Begin with a balanced equation: $\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}$
Since this is a strong acid and there is a $1: 1$ ratio between HCl and H^{+},
$\left[\mathrm{H}^{+}\right]=[\mathrm{HCl}]=0.10 \mathrm{M} \quad$ first part of the answer

Find $\left[\mathrm{OH}^{-}\right]$using K_{w} :

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

Rearrange this equation to find the unknown; in this case $\left[\mathrm{OH}^{-}\right]$:

$$
\left[\mathrm{OH}^{-}\right]=\frac{K_{w}}{\left[\mathrm{H}^{+}\right]}
$$

$\begin{array}{lll}\text { Substitute in values and solve for }[\mathrm{OH}]: & {\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{[0.10]}} & \begin{array}{l}\mathrm{K}_{\mathrm{w}} \text { will always } \\ \text { equal } \\ 1.0 \times 10^{-14}\end{array}\end{array}$
$[\mathrm{OH}]=1.0 \times 10^{-13} \mathrm{~m}$
answer
d. a $0.01 \mathrm{M} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ solution. $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is a weak acid with $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$.

Because this is a weak acid, we need to do some calculations in order to determine $\left[\mathrm{H}^{+}\right]$. But we still begin with a balanced equation:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}{ }^{-}
$$

We need to set up the K_{a} equation in order to find $\left[\mathrm{H}^{+}\right]$for this weak acid:

Set up the K_{a} equation based on the balanced equation:

$$
K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}
$$

Substitute in known values, and let the unknown values $=x$:

$$
1.8 \times 10^{-5}=\frac{[x][x]}{[0.010]}
$$

Rearrange the equation

$$
\begin{aligned}
& x^{2}=\left(1.8 \times 10^{-5}\right)(0.010) \\
& x^{2}=1.8 \times 10^{-7} \\
& x=\left[H^{+}\right]=4.2 \times 10^{-4}
\end{aligned}
$$

first part of the answer

Find $\left[\mathrm{OH}^{-}\right]$using K_{w} :

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

Rearrange this equation to find the unknown; in this case $[\mathrm{OH}]$:

$$
\left[\mathrm{OH}^{-}\right]=\frac{K_{w}}{\left[H^{+}\right]}
$$

Substitute in values and solve for $[\mathrm{OH}]: \quad\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{\left[4.20 \times 10^{-4}\right]} \quad \begin{aligned} & \mathrm{K}_{\mathrm{w}} \text { will always } \\ & \text { equal } \\ & 1.0 \times 10^{-14}\end{aligned}$

$$
[\mathrm{OH}]=2.4 \times 10^{-11} \mathrm{M}
$$

answer
6. A mass of 1.4 g of KOH is dissolved in water to form 500 mL of solution. What is the concentration of H^{+}ions in this solution if the temperature of the solution is $25^{\circ} \mathrm{C}$? KOH is a strong base.

We realize that if we have a base we will first determine $\left[\mathrm{OH}^{+}\right]$. Then we will use K_{w} to find $\left[\mathrm{H}^{+}\right]$.
To calculate the concentration of KOH , we need to convert grams to moles. The molar mass of KOH is $56.1 \mathrm{~g} / \mathrm{mol}$

$$
[\mathrm{KOH}]=1.4 \mathrm{~g} \times \frac{\mathrm{mol}}{56.1 \mathrm{~g}} \times \frac{1}{0.500 \mathrm{~L}}=0.05 \mathrm{M}
$$

Write the balanced equation: $\mathrm{KOH}_{(\mathrm{aq})} \rightarrow \mathrm{K}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}$
Since KOH is a strong base and there is a $1: 1$ ratio between OH^{-}and $\mathrm{KOH}:\left[\mathrm{OH}^{-}\right]=[\mathrm{KOH}]=0.05 \mathrm{M}$

Find $\left[\mathrm{H}^{+}\right]$using $\mathrm{K}_{\mathrm{w}}: \quad \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$

Rearrange this equation to find the unknown; in this case $\left[\mathrm{H}^{+}\right]$:

$$
\begin{array}{ll}
{\left[H^{+}\right]=\frac{K_{w}}{\left[O H^{-}\right]}} & \\
{\left[H^{+}\right]=\frac{1.0 \times 10^{-14}}{[0.050]}} & \begin{array}{l}
K_{w} \text { will always } \\
\text { equal } \\
1.0 \times 10^{-14}
\end{array}
\end{array}
$$

Substitute in values and solve for $\left[\mathrm{H}^{+}\right]: \quad\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-14}}{[0.050]}$

$$
\left[\mathrm{H}^{+}\right]=2.0 \times 10^{-13} \mathrm{M}
$$

answer
7. A mass of 4.0 g of NaOH is dissolved in water to form 500 mL of solution with a temperature of $25^{\circ} \mathrm{C}$. Calculate the hydronium ion concentration in this solution.

The concentration of the hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, is found by finding $\left[\mathrm{H}^{+}\right]$.
Since we are given a base, we will first find $\left[\mathrm{OH}^{-}\right]$. Then we use K_{w} to find $\left[\mathrm{H}^{+}\right]$, which will also equal $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.

The previous questions show the steps that need to be done. Key steps and answers:

Find $[\mathrm{NaOH}]$.
$[\mathrm{NaOH}]=0.20 \mathrm{M}$
Find $\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{OH}^{-}\right]=0.20 \mathrm{M}$
Find $\left[\mathrm{H}^{+}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.0 \times 10^{-14} \mathrm{M}$
final answer
8. Calculate the pH of a solution of nitric acid that is:
a. $1.0 \times 10^{-4} \mathrm{M}$

To find pH we must first find $\left[\mathrm{H}^{+}\right]$
The question gives us the concentration of nitric acid, HNO_{3}
$\left[\mathrm{HNO}_{3}\right]=1.0 \times 10^{-4} \mathrm{M}$
The balanced equation: $\mathrm{HNO}_{3(\mathrm{aq)}} \rightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$
Since nitric acid is a strong acid, and there is a $1: 1$ ratio between $\mathrm{HNO}_{3} \& \mathrm{H}^{+}$:
$\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-4} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(1.0 \times 10^{-4}\right)=4.0$ answer
b. consists of 6.3 g of solute dissolved in 1.00 L of solution?

First calculate the concentration of HNO_{3} (whose molar mass is $63.0 \mathrm{~g} / \mathrm{mol}$)

$$
\left[\mathrm{HNO}_{3}\right]=6.3 \mathrm{~g} \times \frac{\mathrm{mol}}{63.0 \mathrm{~g}} \times \frac{1}{1.0 \mathrm{~L}}=0.10 \mathrm{M}
$$

Since nitric acid is a strong acid, and there is a 1:1 ratio between $\mathrm{HNO}_{3} \& \mathrm{H}^{+}: \quad\left[\mathrm{H}^{+}\right]=0.10 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.1)=1.0$ answer
9. Calculate the pH of a solution that consists of 5.0 g of HCl in 250 mL of solution?

First calculate the concentration HCl (whose molar mass is $36.5 \mathrm{~g} / \mathrm{mol}$)

$$
[H C I]=5.00 \mathrm{~g} \times \frac{\mathrm{mol}}{36.5 \mathrm{~g}} \times \frac{1}{0.250 \mathrm{~L}}=0.55 \mathrm{M}
$$

The balanced equation: $\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}_{(\mathrm{aq})}$
Since hydrochloric acid is a strong acid,
and there is a $1: 1$ ratio between $\mathrm{HCl} \& \mathrm{H}^{+}$: $\left[\mathrm{H}^{+}\right]=0.55 \mathrm{M}$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.55)=0.26 \text { answer }
$$

10. What is the $\left[\mathrm{H}^{+}\right]$of a solution with a pH of 10.00 at $25^{\circ} \mathrm{C}$?
1.00×10^{-10}
$\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH})=\operatorname{antilog}(-10.00)=1.00 \times \mathbf{1 0}^{-\mathbf{- 1 0}} \mathbf{M}$ answer
11. What is the pH of an aqueous solution containing 0.0020 M barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}$?

To find pH we must first find $\left[\mathrm{H}^{+}\right]$. However, barium hydroxide is a base, so we first find $\left[\mathrm{OH}^{-}\right]$and then use K_{w} to find $\left[\mathrm{H}^{+}\right]$

Balanced equation: $\quad \mathrm{Ba}(\mathrm{OH})_{2(\text { (aq })} \rightarrow \mathrm{Ba}^{2+}{ }_{(\text {aq })}+2 \mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
From the balanced equation we find that the concentration of OH^{-}will be twice that of $\mathrm{Ba}(\mathrm{OH})_{2}$:

$$
\left[\mathrm{OH}^{-}\right]=2 \times\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]=2 \times 0.0020=0.0040 \mathrm{M} \text { or } 4.00 \times 10^{-\mathbf{3}} \mathbf{~ M}
$$

$\left[\mathrm{H}^{+}\right]=\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-3}}=2.5 \times 10^{-12}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(2.5 \times 10^{-12}\right)=11.6$ answer

ALTERNATE METHOD:

When you have a base, there is another way to determine pH other than by first calculating $\left[\mathrm{H}^{+}\right]$.
Use the relationship: $\mathrm{pH}+\mathrm{pOH}=14 \quad$ which rearranges to: $\mathrm{pH}=14-\mathrm{pOH}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(4.3 \times 10^{-3}\right)=2.4$
Then: $\mathrm{pH}=14-\mathrm{pOH}$
$\mathrm{pH}=14-2.4$
$\mathrm{pH}=11.6$
answer
12. Calculate the hydronium ion concentration of:
a) 100.0 mL of an aqueous solution containing 0.60 g of sodium hydroxide, NaOH .

Finding hydronium ion concentration, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$means finding $\left[\mathrm{H}^{+}\right]$.
Again, we are given a base so we will first find $\left[\mathrm{OH}^{-}\right]$.

$$
[\mathrm{NaOH}]=0.60 \mathrm{~g} \times \frac{\mathrm{mol}}{40.0 \mathrm{~g}} \times \frac{1}{0.100 \mathrm{~L}}=0.15 \mathrm{M}
$$

Balanced equation: $\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\text {(aq) }}{ }^{-}$
$\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]=0.15 \mathrm{M}$

Use K_{w} to find $\left[\mathrm{H}^{+}\right]: \quad\left[\mathrm{H}^{+}\right]=\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.0 \times 10^{-14}}{0.15}=6.7 \times 10^{-14} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$answer
b) a blood sample with a pH of 7.40
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}^{+}\right]=$antilog $(-\mathrm{pH})$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\operatorname{antilog}(-7.40)=4.0 \times 10^{-8} \mathrm{M}$ answer

