1. Calculate $[H^{\dagger}]$ in a 2.00 L solution of hydrogen chloride in which 3.65 g of HCl is dissolved. K_a for HCl is very large.

We will need to know the concentration of the acid, HCI.

Concentration is measured as molarity which has the units $\frac{mol}{r}$

Since the question tells us the *mass* of HCl in grams, we will need to convert grams to moles. To do so we need to know the molar mass of HCl.

element	Molar Mass (g/mol)	х	No. Atoms			
Н	1.0	×	1	=	1.0	
CI	35.5	×	1	=	35.5	
Molar Mas	ss compound ((g/mo	ol)	=	36.5	g mol

Unit analysis may be used to calculate the concentration of the acid solution:

$$[HCI] = 3.65g \times \frac{mol}{36.5g} \times \frac{1}{2.00L} = 0.05M$$

Next write a balanced equation: $HCI_{(aq)} \rightarrow H^{+}_{(aq)} + CI^{-}_{(aq)}$

Since HCl is a strong acid, it breaks down completely into ions. BECAUSE OF THIS, since there is a 1:1 relationship between HCl and H^+ , the [HCl] will equal the $[H^+]$:

Answer

2. Calculate [H⁺] in a solution containing 3.20 g of HNO₃ in 250 mL of solution. Nitric acid is a very strong acid.

This is a similar question – again we need to find $[H^{\dagger}]$ for a strong acid. Begin by calculating the concentration of the acid solution.

This will involve converting grams HNO₃ into moles HNO₃:

element	Molar Mass (g/mol)	×	No. Atoms			
Н	1.0	×	1	=	1.0	
Ν	14.0	×	1	=	14.0	
0	16.0	×	3	=	48.0	
Molar Mas	ss compound ((g/m	ol)	=	63.0	 mo

Unit analysis may be used to calculate the concentration of the acid solution:

$$[HNO_3] = 3.20g \times \frac{mol}{63.0g} \times \frac{1}{0.250L} = 0.203M$$

Next write a balanced equation:

 $HNO_{3(aq)} \rightarrow H^{+}_{(aq)} + NO_{3(aq)}^{-}$

Since HNO_3 is a strong acid, it breaks down completely into ions. BECAUSE OF THIS, since there is a 1:1 relationship between HNO_3 and H^+ , the concentration of HNO_3 will equal the concentration of H^+ :

 $[H^+] = [HNO_3] = 0.203 M$ Answer

3. An acetic acid (HC₂H₃O₂) solution is 0.25 M. Given that K_a for acetic acid is 1.8×10^{-5} , find [H⁺].

The question gives us the concentration of the acid (0.25 M), so we may begin by writing a balanced equation. We need this in order to set up the K_a expression.

 $HC_2H_3O_2_{(aq)} \rightleftharpoons H^+_{(aq)} + C_2H_3O_2^-_{(aq)}$

Because this is a weak acid, $[H^+]$ WILL NOT EQUAL $[HC_2H_3O_2]$.

We will need to use the K_a expression to find $[H^{\dagger}]$:

$K_{a} = \frac{[H^{+}][C_{2}H_{3}O_{2}^{-}]}{[HC_{2}H_{3}O_{2}]}$	
$1.8 \times 10^{-5} = \frac{[x][x]}{[0.25]}$	
$x^2 = (1.8 \times 10^{-5})(0.25)$	
$x^2 = 4.5 \times 10^{-6}$	
$\sqrt{x^2} = \sqrt{4.5} \times 10^{-6}$	
$x = [H^{+}] = 2.1 \times 10^{-3}$	Answer
$[C_2H_3O_2^-] = 2.1 \times 10^{-3}$	
	$K_{a} = \frac{[H^{+}][C_{2}H_{3}O_{2}^{-}]}{[HC_{2}H_{3}O_{2}]}$ $1.8 \times 10^{-5} = \frac{[x][x]}{[0.25]}$ $x^{2} = (1.8 \times 10^{-5})(0.25)$ $x^{2} = 4.5 \times 10^{-6}$ $\sqrt{x^{2}} = \sqrt{4.5} \times 10^{-6}$ $x = [H^{+}] = 2.1 \times 10^{-3}$ $[C_{2}H_{3}O_{2}] = 2.1 \times 10^{-3}$

4. A solution of acetic acid contains 12.0 g of HC₂H₃O₂ in 500 mL of solution. Calculate [H⁺].

We will need to know the concentration of the acid, $HC_2H_3O_2$

Since the question tells us the mass of $HC_2H_3O_2$ in grams, we will need to convert grams to moles. To do so we need to know the molar mass of $HC_2H_3O_2$.

element	Molar Mass (g/mol)	×	No. Atoms			
Н	1.0	×	4	=	4.0	
С	12.0	×	2	=	24.0	
0	16.0	×	2	=	32.0	
Molar Ma	ss compound ((g/mo	ol)	=	60.0	g mol

Unit analysis may be used to calculate the concentration of the acid solution:

$$[HC_2H_3O_2] = 12.0g \times \frac{mol}{60.0g} \times \frac{1}{0.500L} = 0.400M$$

Next we need a balanced equation which will be needed in order to set up the K_a expression.

$$HC_2H_3O_2_{(aq)} \rightleftharpoons H^+_{(aq)} + C_2H_3O_2^-_{(aq)}$$

Because this is a weak acid, $[H^+]$ WILL NOT EQUAL $[HC_2H_3O_2]$.

We will need to use the K_a expression to find [H⁺]. K_a for this acid was given in the previous question or can be found in the Table of Acid Strengths:

Set up the equation based on the balanced equation:	$K_{a} = \frac{[H^{+}][C_{2}H_{3}O_{2}^{-}]}{[HC_{2}H_{3}O_{2}]}$	
Substitute in known values, and let the unknown values = x :	$1.8 \times 10^{-5} = \frac{[x][x]}{[0.400]}$	
Rearrange the equation	$x^2 = (1.8 \times 10^{-5})(0.400)$	
	$x^2 = 7.2 \times 10^{-6}$	
Take the square root to find x:	$\sqrt{x^2} = \sqrt{7.2 \times 10^{-6}}$	
	$x = [H^+] = 2.7 \times 10^{-3}$	Answer
also	$[C_2H_3O_2^-] = 2.7 \times 10^{-3}$	

- 5. Calculate $[H^+]$ and $[OH^-]$ at 25° C in:
 - a. a 5.0 M NaOH solution. NaOH is a strong base.

Begin with a balanced equation: NaOH $_{(aq)} \rightarrow Na^{+}_{(aq)} + OH^{-}_{(aq)}$

Since this is a strong base and there is a 1:1 ratio between NaOH and OH⁻,

Find $[H^+]$ using K_w :	$K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$	
Rearrange this equation to find the unknown; in this case $[H^+]$:	$[H^+] = \frac{\kappa_w}{[OH^-]}$	
Substitute in values and solve for $[H^+]$:	$[H^+] = \frac{1.0 \times 10^{-14}}{[5.0]}$	K_w will always equal $1.0 imes 10^{-14}$

 $[H^+] = 2.0 \times 10^{-15} M$ answer

b. a 0.025 M Ca(OH)₂ solution. Ca(OH)₂ is a strong base.

Begin with a balanced equation: $Ca(OH)_{2 (aq)} \rightarrow Ca^{2+}_{(aq)} + 2 OH^{-}_{(aq)}$

Since this is a strong base and there is a 1:2 ratio between Ca(OH)₂ and OH,

$[OH^{-}] = 2 \times [Ca(OH)_2] = 2 \times 0.025 = 0.050 \text{ M}$ first part of the answer

	[H ⁺] = 2.0 × 10 ⁻¹³ M	answer
Substitute in values and solve for $[H^*]$:	$[H^+] = \frac{1.0 \times 10^{-14}}{[0.050]}$	K _w will always equal 1.0 × 10⁻¹⁴
Rearrange this equation to find the unknown; in this case [H ⁺]:	$[H^+] = \frac{\kappa_w}{[OH^-]}$	
Find $[H^{\dagger}]$ using K_{w} :	$K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$	

c. a 0.10 M HCl solution. HCl is a strong acid

 $[H^{+}] = [HCI] = 0.10 M$

Begin with a balanced equation: HCl $_{(aq)} \rightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)}$

Since this is a strong acid and there is a 1:1 ratio between HCI and H⁺,

Find [OH] using K_w: $K_w = [H^+][OH] = 1.0 \times 10^{-14}$ Rearrange this equation to find the
unknown; in this case [OH]: $[OH^-] = \frac{K_w}{[H^+]}$ Substitute in values and solve for [OH]: $[OH^-] = \frac{1.0 \times 10^{-14}}{[0.10]}$ K_w will always
equal
 1.0×10^{-14} [OH] = 1.0 × 10^{-13} Manswer

first part of the answer

d. a 0.01 M HC₂H₃O₂ solution. HC₂H₃O₂ is a weak acid with K_a = 1.8×10^{-5} .

Because this is a weak acid, we need to do some calculations in order to determine $[H^+]$. But we still begin with a balanced equation:

$$HC_2H_3O_2_{(aq)} \rightleftharpoons H^+_{(aq)} + C_2H_3O_2^-_{(aq)}$$

We need to set up the K_a equation in order to find $[H^*]$ for this weak acid:

Set up the K_a equation based on the balanced equation:	$K_{a} = \frac{[H^{+}][C_{2}H_{3}O_{2}^{-}]}{[HC_{2}H_{3}O_{2}]}$	
Substitute in known values, and let the unknown values = <i>x</i> :	$1.8 \times 10^{-5} = \frac{[x][x]}{[0.010]}$	
Rearrange the equation	$x^2 = (1.8 \times 10^{-5})(0.010)$	
	$x^2 = 1.8 \times 10^{-7}$	
	$x = [H^+] = 4.2 \times 10^{-4}$	first part of the answer
Find [OH ⁻] using K _w :	K _w = [H ⁺][OH ⁻] = 1.0 × 1	0 ⁻¹⁴
Rearrange this equation to find the unknown; in this case [OH]:	$[OH^-] = \frac{K_w}{[H^+]}$	
Substitute in values and solve for [OF	$H_{\rm I}: [OH^{-}] = \frac{1.0 \times 10^{-14}}{[4.20 \times 10^{-4}]}$	K _w will always - equal 1.0 × 10 ⁻¹⁴
	$[OH] = 2.4 \times 10^{-11} M$	answer

6. A mass of 1.4 g of KOH is dissolved in water to form 500 mL of solution. What is the concentration of H^+ ions in this solution if the temperature of the solution is 25° C? KOH is a strong base.

We realize that if we have a base we will first determine [OH]. Then we will use K_w to find [H⁺].

To calculate the concentration of KOH, we need to convert grams to moles. The molar mass of KOH is 56.1 g/mol

$$[KOH] = 1.4g \times \frac{mol}{56.1g} \times \frac{1}{0.500L} = 0.05M$$

Write the balanced equation: $KOH_{(aq)} \rightarrow K^{+}_{(aq)} + OH^{-}_{(aq)}$

Since KOH is a strong base and there is a 1:1 ratio between OH⁻ and KOH: [OH⁻] = [KOH] = 0.05 M

	$[H^{+}] = 2.0 \times 10^{-13} M$	answer
Substitute in values and solve for $[H^*]$:	$[H^+] = \frac{1.0 \times 10^{-14}}{[0.050]}$	K_w will always equal $1.0 imes 10^{-14}$
Rearrange this equation to find the unknown; in this case $[H^*]$:	$[H^+] = \frac{K_w}{[OH^-]}$	
Find $[H^+]$ using K_w :	$K_w = [H^+][OH^-] = 1.0 \times 10^{-14}$	

7. A mass of 4.0 g of NaOH is dissolved in water to form 500 mL of solution with a temperature of 25° C. Calculate the hydronium ion concentration in this solution.

The concentration of the hydronium ion, H_3O^+ , is found by finding $[H^+]$.

Since we are given a base, we will first find [OH]. Then we use K_w to find [H⁺], which will also equal [H₃O⁺].

The previous questions show the steps that need to be done. Key steps and answers:

Find $[H^+] = [H_3O^+]$	$[H_3O^+] = 5.0 \times 10^{-14} M$	final answer
Find [OH ⁻]	[OH⁻] = 0.20 M	
Find [NaOH].	[NaOH] = 0.20 M	

- 8. Calculate the pH of a solution of nitric acid that is:
 - a. 1.0×10^{-4} M

To find pH we must first find $[H^{\dagger}]$

The question gives us the concentration of nitric acid, HNO3 $[HNO_3] = 1.0 \times 10^{-4} \text{ M}$ The balanced equation: $HNO_{3(aq)} \rightarrow H^{+}_{(aq)} + NO_{3^{-}(aq)}$ Since nitric acid is a strong acid,
and there is a 1:1 ratio between HNO3 & H^{+}: $[H^{+}] = 1.0 \times 10^{-4} \text{ M}$

 $pH = -\log[H^{+}] = -\log(1.0 \times 10^{-4}) = 4.0$ answer

b. consists of 6.3 g of solute dissolved in 1.00 L of solution?

First calculate the concentration of HNO₃ (whose molar mass is 63.0 g/mol)

$$[HNO_3] = 6.3g \times \frac{mol}{63.0g} \times \frac{1}{1.0L} = 0.10M$$

Since nitric acid is a strong acid, and there is a 1:1 ratio between $HNO_3 \& H^+$: $[H^+] = 0.10 M$

 $pH = -log[H^+] = -log(0.1) = 1.0$ answer

9. Calculate the pH of a solution that consists of 5.0 g of HCl in 250 mL of solution?

First calculate the concentration HCI (whose molar mass is 36.5 g/mol)

$$[HCI] = 5.00g \times \frac{mol}{36.5g} \times \frac{1}{0.250L} = 0.55M$$

The balanced equation: $HCl_{(aq)} \rightarrow H^{+}_{(aq)} + Cl_{(aq)}$

Since hydrochloric acid is a strong acid,
and there is a 1:1 ratio between HCl &
$$H^+$$
: [H^+] = 0.55 M

10. What is the $[H^{\dagger}]$ of a solution with a pH of 10.00 at 25°C? **1.00** × **10**⁻¹⁰

$$[H^{+}]$$
 = antilog(-pH) = antilog(-10.00) = **1.00** × **10**⁻¹⁰ M answer

11. What is the pH of an aqueous solution containing 0.0020 M barium hydroxide, Ba(OH)₂?

To find pH we must first find $[H^+]$. However, barium hydroxide is a base, so we first find $[OH^-]$ and then use K_w to find $[H^+]$

Balanced equation: $Ba(OH)_{2(aq)} \rightarrow Ba^{2^{+}}_{(aq)} + 2 OH^{-}_{(aq)}$

From the balanced equation we find that the concentration of OH⁻ will be twice that of Ba(OH)₂:

 $[OH^{-}] = 2 \times [Ba(OH)_{2}] = 2 \times 0.0020 = 0.0040 \text{ M or } 4.00 \times 10^{-3} \text{ M}$

$$[H^+] = \frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{4.0 \times 10^{-3}} = 2.5 \times 10^{-12}$$

 $pH = -\log[H^{+}] = -\log(2.5 \times 10^{-12}) = 11.6$ answer

ALTERNATE METHOD:

When you have a base, there is another way to determine pH other than by first calculating $[H^{\dagger}]$.

 Use the relationship: pH + pOH = 14 which rearranges to: pH = 14 - pOH

 $pOH = -\log [OH^{-}] = -\log (4.3 \times 10^{-3}) = 2.4$

 Then: pH = 14 - pOH

 pH = 14 - 2.4

 pH = 11.6

 answer

- 12. Calculate the hydronium ion concentration of:
 - a) 100.0 mL of an aqueous solution containing 0.60 g of sodium hydroxide, NaOH.

Finding hydronium ion concentration, $[H_3O^+]$ means finding $[H^+]$.

Again, we are given a base so we will first find [OH⁻].

$$[NaOH] = 0.60g \times \frac{mol}{40.0g} \times \frac{1}{0.100L} = 0.15M$$

Balanced equation: $NaOH_{(aq)} \rightarrow Na^{+}_{(aq)} + OH^{-}_{(aq)}$

[OH⁻] = [NaOH] = 0.15 M

Use K_w to find [H⁺]:
$$[H^+] = \frac{K_w}{[OH^-]} = \frac{1.0 \times 10^{-14}}{0.15} = 6.7 \times 10^{-14} M = [H_3O^+]$$
 answer

b) a blood sample with a pH of 7.40

 $[H_3O^+] = [H^+] = antilog (-pH)$

 $[H_3O^+]$ = antilog(-7.40) = 4.0 × 10⁻⁸M answer