Chemistry 30

Unit 5: Acids & Bases

Practice Set 1 Answers: 1-1 to 1-6 What are Acids & Bases?

1. List four characteristic properties of acids and four characteristic properties of bases.

Acids	Bases
sour taste	bitter taste
turn litmus paper red	turn litmus paper blue
react with active metals to produce H ₂ (g)	slippery feel
form electrolytic solutions	form electrolytic solutions

2. Fill in the chart below by providing simple definitions.

	Acid	Base
Arrhenius's Definition	produce hydrogen ions in solution	produce hydroxide ions in solution
Brønsted-Lowry Definitions	proton donors	proton acceptors

3. a. Write the correct symbol for the hydrogen ion:

b. Write the correct symbol for a hydronium ion: H₃O⁺

4. Define the term amphiprotic.

A substance that can act as an acid in some reactions and as a base in other reactions.

- 5. Write balanced equations for the:
 - a. Dissociation of calcium hydroxide, Ca(OH)₂

$$Ca(OH)_2 \rightarrow Ca^{2+}(aq) + 2 OH(aq)$$

b. Ionization of nitric acid, HNO₃

$$HNO_3 \rightarrow H^+(aq) + NO_3^-(aq)$$

6. Write the equation for the ionization of nitric acid, HNO₃, showing the formation of the hydronium ion.

$$HNO_3 + H_2O(I) \rightarrow H_3O^+(aq) + NO_3^-(aq)$$

7. Identify the hydrogen-ion donor & acceptor (present on the reactant side of each equation) in each of the following reactions:

	H ⁺ donor (the acid)	H ⁺ acceptor (the base)
a. $HNO_3(l) + H_2O(l) \rightarrow H_3O^+(aq) + NO_3^-(aq)$	HNO ₃	H ₂ O
b. $C_2H_5NH_2(l) + H_2O(l) \rightarrow C_2H_5NH_3^+(aq) + OH^-(aq)$	ng) H ₂ O	C ₂ H ₅ NH ₂
c. $CH_3CO_2 H(l) + H_2O(l) \rightarrow CH_3CO_2^-(aq) + H_3O^+(aq)$	aq) CH ₃ CO ₂ H	H ₂ O

8. For each acid listed in question 7, identify it's conjugate base.

_	Acid (Reactant side of equation)	Conjugate Base	<u></u>
a.	HNO ₃	NO ₃	Conjugate bases differ from
b.	H_2O	OH.	their acids by having one less hydrogen.
C.	CH₃CO₂ H	CH ₃ CO ₂ -	

9. Write the formulas for the conjugate base of each of the following acids.

Conjugate bases have one less hydrogen then their acids. Losing a hydrogen ion (a proton) will increase the negative charge by a value of 1. Be careful to include all charges!

a. H₂SO₃

b. HCO₃

c. NH₄⁺

HSO₃

 CO_3^{2-}

NH₃

10. Write the formulas for the conjugate acid of each of the following bases.

Conjugate acids will have one more hydrogen than their base, and the charge will increase the positive charge by one.

a. H₂O

b. CO_3^{2-}

c. PH₃

 H_3O^{\dagger}

HCO₃1

PH₄⁺

- 11. Which of the following would you expect to act as Brønsted-Lowry bases:
 - a) Br⁻
- b) Li⁺
- c) H₃PO₄
- d) NH_4^+
- e) H₂O
- f) NH₂

The bases are the substances that could combine with a H⁺. They are Br, H₂O, and NH₂

12. For each of the following reactions, identify the Brønsted-Lowry acid and Brønsted-Lowry base on the reactant side of the equation, and the conjugate acid and conjugate base on the product side.

a.	HSO ₄ (aq)	+	CO ₃ ²⁻ (aq)	\rightarrow	SO ₄ ²⁻ (aq)		HCO ₃ (aq)
_	acid		base		conjugate base		conjugate acid
b.	HCO ₃ (aq)	+	OH ⁻ (aq)	\rightarrow	CO ₃ ²⁻ (aq)	+	H ₂ O(I)
	acid		base		conjugate base		conjugate acid

13. Consider the following two reactions. In which reaction does H₂PO₄ act as a base? In which does it act as an acid?

Is H₂PO₄ an acid or base?

a.	$H_2PO_4^-(aq) + H_2O(l) \rightarrow H_3PO_4(aq) + OH^-(aq)$	a base because it accepts another H ⁺ to form H ₃ PO ₄
b.	$H_2PO_4^-(aq) + H_2O(l) \rightarrow HPO_4^{-2}(aq) + H_3O^+(aq)$	an acid because it donates a H⁺