- 1. What is the approximate pH of a solution that is:
 - a. yellow in methyl red, yellow in phenol red, and yellow in alizarin yellow? 6.0 6.6
 - b. yellow in methyl red, red in phenol red, and red in alizarin yellow? 12 or higher
- 2. Write the general word equation for a neutralization reaction.

Acid + Base → Salt + Water

- 3. Write **balanced** neutralization reactions for the following:
 - a. the reaction between acetic acid, HC₂H₃O₂ and potassium hydroxide, KOH

$HC_2H_3O_2 + KOH \rightarrow KC_2H_3O_2 + H_2O$

b. the reaction between nitric acid, HNO₃ and calcium hydroxide, Ca(OH)₂

 $2 \text{ HNO}_3 + \text{Ca(OH)}_2 \rightarrow \text{Ca(NO}_3)_2 + 2 \text{ H}_2\text{O}$

c. the reaction between sulfuric acid, H₂SO₄, and sodium hydroxide, NaOH

 $H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$

4. If 25.00 mL of a 0.100 M NaOH solution is required to neutralize 15.00 mL of a solution of HCl, what is the molarity of the acid?

Write the balanced equation: $HCl + NaOH \rightarrow NaCl + H_2O$

The acid:base ratio is 1:1, therefore the formula used to calculate the unknown concentration is:

$$M_A V_A = M_B V_B$$

Determine the values for the known variables:

M _A	M _A	M_B	0.100 M
VA	15.00 mL	VB	25.00 mL

Substitute values into the formula $M_AV_A = M_BV_B$ and solve for the unknown:

M _A V _A	=	M_BV_B
M _A (15.00)	=	(0.100)(25.00)
$M_{\rm A}(15.00)$	=	2.50
M _A	=	$\frac{2.50}{15.00} = 0.167M$

The concentration of the HCl solution is 0.167 M.

5. What is the concentration of a calcium hydroxide solution, Ca(OH)₂, if 30.00 mL of the base is completely neutralized by 10.0 mL of 0.0200 M HCl?

Write the balanced equation: $2 \text{ HCl} + \text{Ca}(\text{OH})_2 \rightarrow \text{Ca}\text{Cl}_2 + 2 \text{ H}_2\text{O}$

The acid:base ratio is 2:1, therefore the formula used to calculate the unknown concentration is:

$$M_A V_A = 2 M_B V_B$$

Determine the values for the known variables:

M _A	0.0200 M	M _B	M _B
VA	10.00 mL	V_B	30.00 mL

Substitute values into the formula $M_A V_A = M_B V_B$ and solve for the unknown:

M _A V _A	=	2 M _B V _B 2 (M _B)(30.00)
(0.0200) (10.00)	=	
0.200	=	60.00 (M _B)
$\frac{0.200}{60.00} = 0.00333M$	=	M _B

The concentration of the Ca(OH)₂ solution is 3.33×10^{-3} M.