1. What is the approximate pH of a solution that is:
a. yellow in methyl red, yellow in phenol red, and yellow in alizarin yellow?
b. yellow in methyl red, red in phenol red, and red in alizarin yellow?

12 or higher
2. Write the general word equation for a neutralization reaction.

Acid + Base \rightarrow Salt + Water
3. Write balanced neutralization reactions for the following:
a. the reaction between acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ and potassium hydroxide, KOH

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{KOH} \rightarrow \mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

b. the reaction between nitric acid, HNO_{3} and calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$

$$
2 \mathrm{HNO}_{3}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

c. the reaction between sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, and sodium hydroxide, NaOH

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

4. If 25.00 mL of a 0.100 M NaOH solution is required to neutralize 15.00 mL of a solution of HCl , what is the molarity of the acid?

Write the balanced equation: $\quad \mathbf{H C l}+\mathbf{N a O H} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

The acid:base ratio is $1: 1$, therefore the formula used to calculate the unknown concentration is:

$$
\mathbf{M}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}=\mathbf{M}_{\mathrm{B}} \mathbf{V}_{\mathbf{B}}
$$

Determine the values for the known variables:

M_{A}	M_{A}	M_{B}	0.100 M
V_{A}	15.00 mL	$\mathrm{~V}_{\mathrm{B}}$	25.00 mL

Substitute values into the formula $M_{A} V_{A}=M_{B} V_{B}$ and solve for the unknown:

$\mathbf{M}_{\mathbf{A}} V_{\mathbf{A}}$	$=\mathbf{M}_{\mathbf{B}} V_{\mathbf{B}}$
$\mathbf{M}_{\mathbf{A}}(\mathbf{1 5 . 0 0)}$	$=\mathbf{(0 . 1 0 0) (\mathbf { 2 5 . 0 0 })}$
$\mathbf{M}_{\mathbf{A}}(\mathbf{1 5 . 0 0})$	$=\mathbf{2 . 5 0}$
$\mathbf{M}_{\mathbf{A}}$	$=\frac{2.50}{15.00}=0.167 \mathrm{M}$

The concentration of the $\mathbf{H C l}$ solution is 0.167 M .
5. What is the concentration of a calcium hydroxide solution, $\mathrm{Ca}(\mathrm{OH})_{2}$, if 30.00 mL of the base is completely neutralized by 10.0 mL of 0.0200 M HCl ?

Write the balanced equation: $\quad 2 \mathbf{H C l}+\mathrm{Ca}(\mathbf{O H})_{2} \rightarrow \mathbf{C a C l}_{2}+2 \mathbf{H}_{2} \mathrm{O}$
The acid:base ratio is $\mathbf{2}: 1$, therefore the formula used to calculate the unknown concentration is:

$$
M_{A} V_{A}=2 M_{B} V_{B}
$$

Determine the values for the known variables:

M_{A}	0.0200 M	M_{B}	M_{B}
V_{A}	10.00 mL	$\mathrm{~V}_{\mathrm{B}}$	30.00 mL

Substitute values into the formula $M_{A} V_{A}=M_{B} V_{B}$ and solve for the unknown:

$\mathbf{M}_{\mathbf{A}} \mathbf{V}_{\mathbf{A}}$	$=$	$\mathbf{2} \mathbf{M}_{\mathbf{B}} \mathbf{V}_{\mathbf{B}}$
$\mathbf{(0 . 0 2 0 0}(\mathbf{1 0 . 0 0)}$	$=$	$\mathbf{2}\left(\mathbf{M}_{\mathbf{B}}\right)(\mathbf{3 0 . 0 0})$
$\mathbf{0 . 2 0 0}$	$=$	$\mathbf{6 0 . 0 0}\left(\mathbf{M}_{\mathbf{B}}\right)$
$\frac{0.200}{60.00}=0.00333 M$	$=$	$\mathbf{M}_{\mathbf{B}}$

The concentration of the $\mathbf{C a}(\mathbf{O H})_{2}$ solution is $3.33 \times 10^{-3} \mathrm{M}$.

