Chemistry 30

Unit 6: Redox Reactions and Electrochemistry

Assignment 2: Balancing Redox Reactions

24

6 1. Balance the following reactions using the oxidation number method.

a. NaClO +
$$H_2S \rightarrow NaCl + H_2SO_4$$

	initial		final	change		Coefficient		Total e
CI	+1	\rightarrow	-1	2	×	4	=	8
S	-2	\rightarrow	+6	8	×	1	=	8

4 NaClO + 1
$$H_2S \rightarrow$$
 4 NaCl + 1 H_2SO_4

b. Sn + HNO₃ + H₂O
$$\rightarrow$$
 H₂SnO₃ + NO

	initial		final	change		Coefficient		Total e ⁻	
Sn	0	\rightarrow	+4	4	×	3	=	12	
N	+5	\rightarrow	+2	3	×	4	=	12	

$$3~Sn~+~4~HNO_3~+~1~H_2O~\rightarrow~3~H_2SnO_3~+~4~NO$$

c.
$$K_2Cr_2O_7$$
 + $SnCl_2$ + HCl \rightarrow $CrCl_3$ + $SnCl_4$ + KCl + H_2O

	initial		final	change		no. atoms		No.		Coefficient		Total e
Cr	+6	\rightarrow	+3	3	×	2		6	×	1	=	6
Sn	+2	\rightarrow	+4	2			=	2	×	3	=	6

$$1~\text{K}_2\text{Cr}_2\text{O}_7~+~3~\text{SnCl}_2~+~14~\text{HCl}~\rightarrow~2~\text{CrCl}_3~+~3~\text{SnCl}_4+2~\text{KCl}~+7~\text{H}_2\text{O}$$

Name: ANSWER KEY

6 2. Balance the following half-reactions. Be sure to balance for atoms first, then balance for charge by adding electrons to the appropriate side of the equation. Also identify each as either an oxidation or reduction.

a.
$$Br_2 \rightarrow Br^- \qquad Br_2 + 2e^- \rightarrow 2Br^- \qquad reduction$$

b.
$$Fe^{2+} \rightarrow Fe^{3+}$$
 $\rightarrow Fe^{3+} + 1e^{-}$ oxidation

c.
$$MnO_4^- + H^+ \rightarrow Mn^{2+} + H_2O$$
 $MnO_4^- + 8 H^+ + 5e^- \rightarrow Mn^{2+} + 4 H_2O$ reduction

4 3. Break each equation into two half-reactions. Identify each half-reaction as oxidation or reduction.

a.
$$2 K + I_2 \rightarrow 2 KI$$

$$2 \text{ K} \rightarrow 2 \text{ K}^+ + 2 \text{ e}^-$$
 oxidation $I_2 + 2 \text{ e}^- \rightarrow 2 \text{ I}^-$ reduction

b.
$$2 Br^- + F_2 \rightarrow Br_2 + 2 F^-$$

$$F_2 + 2 e^- \rightarrow 2 F^-$$
 reduction
 $2Br^- \rightarrow Br_2 + 2 e^-$ oxidation

4. Balance the following reactions using the half-reaction method.

a. Na +
$$Br_2 \rightarrow NaBr$$

Step 1	Step 2	Step 3
Write the two balanced half- reactions, removing any spectator ions:	Balance for electrons	Add the half-reactions, replacing any spectator ions that were removed and/or recombining compounds
$Na \rightarrow Na^{+} + 1 e^{-}$	× 2	$2Na \rightarrow 2Na^{+} + 2 e^{-}$
$Br_2 + 2 e^- \rightarrow 2 Br^-$		$Br_2 + 2 e^- \rightarrow 2 Br^-$
	added together:	$2Na + Br_2 \rightarrow 2Na^+ + 2 Br^-$

reform compound: 2 Na + Br₂ → 2 NaBr

Name: ANSWER KEY

b.
$$CrO_4^{2-} + H^+ + Cl^- \rightarrow Cr^{3+} + Cl_2 + H_2O$$

Remember to balance for atoms before adding electrons to balance for charge.

Step 1	Step 2	Step 3
Write the two balanced half- reactions, removing any spectator ions:	Balance electrons	Add the half-reactions, replacing any spectator ions that were removed and/or recombining compounds
$CrO_4^{2-} + 8 H^+ + 3e^- \rightarrow Cr^{3+} + 4 H_2O$	× 2	$2 \text{ CrO}_4^{2^-} + 16 \text{ H}^+ + 6 \text{ e}^- \rightarrow 2 \text{ Cr}^{3+} + 8 \text{ H}_2\text{O}$
$2 \text{ Cl}^- \rightarrow \text{ Cl}_2 + 2 \text{ e}^-$	× 3	$6 \text{ Cl}^- \rightarrow 3 \text{ Cl}_2 + 6 \text{ e}^-$
ado	ded together:	$2CrO_4^{2-} + 16H^+ + 6Cl^- \rightarrow 2Cr^{3+} + 3Cl_2 + 8H_2O$

- 4 3. Balance the following reactions using either the oxidation number method or the half-reaction method.
 - a. NO + As + $H_2O \rightarrow N_2O + HAsO_2$

	initial		final	change		no. atoms		No. e		Coefficient		Total e ⁻
Ν	+2	\rightarrow	+1	1	×	2 (in N ₂ O)	=	2	×	3	=	6
As	0	\rightarrow	+3	3				3	×	2	=	6

Answer: $6 \text{ NO} + 2 \text{ As} + \text{H}_2\text{O} \rightarrow 3 \text{ N}_2\text{O} + 2 \text{ HAsO}_2$

b.
$$Ce^{4+} + I^{-} + OH^{-} \rightarrow Ce^{3+} + IO_{3}^{-} + H_{2}O$$

Step 1	Step 2	Step 3
Write the two balanced half- reactions, removing any spectator ions:	Balance electrons	Add the half-reactions, replacing any spectator ions that were removed and/or recombining compounds
$Ce^{4+} + 1 e^{-} \rightarrow Ce^{3+}$	× 6	$6\text{Ce}^{4+} + 6 \text{ e}^{-} \rightarrow 6\text{Ce}^{3+}$
$I^- + 6 OH^- \rightarrow IO_3^- + 3 H_2O + 6 e^-$		$I^- + 6 OH^- \rightarrow IO_3^- + 3 H_2O + 6 e^-$
ade	ded together:	$6 \text{ Ce}^{4+} + \text{I}^- + 6 \text{ OH}^- \rightarrow 6 \text{ Ce}^{3+} + \text{IO}_3^- + 3 \text{ H}_2\text{O}$