1. Balance the following reactions using the oxidation number method.
a. $\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4}$

	initial		final	change		Coefficient	Total \mathbf{e}^{-}	
Cl	+1	\rightarrow	-1	2	\times	$\mathbf{4}$	$=$	8
S	-2	\rightarrow	+6	8	\times	$\mathbf{1}$	$=$	8

$4 \mathrm{NaClO}+1 \mathrm{H}_{2} \mathrm{~S} \rightarrow 4 \mathrm{NaCl}+1 \mathrm{H}_{2} \mathrm{SO}_{4}$
b. $\mathrm{Sn}+\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SnO}_{3}+\mathrm{NO}$

	initial		final	change		Coefficient	Total \mathbf{e}^{-}	
Sn	0	\rightarrow	+4	4	\times	$\mathbf{3}$	$=$	12
N	+5	\rightarrow	+2	3	\times	$\mathbf{4}$	$=$	12

$3 \mathrm{Sn}+4 \mathrm{HNO}_{3}+1 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{H}_{2} \mathrm{SnO}_{3}+4 \mathrm{NO}$
c. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{SnCl}_{2}+\mathrm{HCl} \rightarrow \mathrm{CrCl}_{3}+\mathrm{SnCl}_{4}+\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$

	initial		final	change	no. atoms	No. \mathbf{e}^{-}	Coefficient	Total \mathbf{e}^{--}			
Cr	+6	\rightarrow	+3	3	\times	2		6	\times	$\mathbf{1}$	$=$
Sn	+2	\rightarrow	+4	2			$=$	2	\times	$\mathbf{3}$	$=$

$1 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+3 \mathrm{SnCl}_{2}+14 \mathrm{HCl} \rightarrow 2 \mathrm{CrCl}_{3}+3 \mathrm{SnCl}_{4}+2 \mathrm{KCl}+7 \mathrm{H}_{2} \mathrm{O}$
2. Balance the following half-reactions. Be sure to balance for atoms first, then balance for charge by adding electrons to the appropriate side of the equation. Also identify each as either an oxidation or reduction.
a. Br_{2}
$\rightarrow \mathrm{Br}^{-}$
$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}$
reduction
b. Fe^{2+}
$\rightarrow \mathrm{Fe}^{3+}$
$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+1 \mathrm{e}^{-}$
oxidation
c. $\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \quad$ reduction
3. Break each equation into two half-reactions. Identify each half-reaction as oxidation or reduction.
a. $2 \mathrm{~K}+\mathrm{I}_{2} \rightarrow 2 \mathrm{KI}$

$$
\begin{array}{ll}
2 \mathrm{~K} \rightarrow 2 \mathrm{~K}^{+}+2 \mathrm{e}^{-} & \text {oxidation } \\
\mathrm{I}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-} & \text {reduction }
\end{array}
$$

b. $2 \mathrm{Br}^{-}+\mathrm{F}_{2} \rightarrow \mathrm{Br}_{2}+2 \mathrm{~F}^{-}$

$$
\begin{array}{ll}
\mathrm{F}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{~F}^{-} & \text {reduction } \\
2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{-} & \text {oxidation }
\end{array}
$$

4. Balance the following reactions using the half-reaction method.
a. $\mathrm{Na}+\mathrm{Br}_{2} \rightarrow \mathrm{NaBr}$

Step 1	Step 2	Step 3
Write the two balanced half- reactions, removing any spectator ions:	Balance for electrons	Add the half-reactions, replacing any spectator ions that were removed and/or recombining compounds
$\mathrm{Na} \rightarrow \mathrm{Na}^{+}+1 \mathrm{e}^{-}$	$\times 2$	$2 \mathrm{Na} \rightarrow 2 \mathrm{Na}^{+}+2 \mathrm{e}^{-}$
$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}$	added together:	 $2 \mathrm{Na}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{Na}^{+}+2 \mathrm{Br}^{-} \rightarrow 2 \mathrm{Br}^{-}$ reform compound: $2 \mathrm{Na}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NaBr}$

b. $\mathrm{CrO}_{4}{ }^{2-}+\mathrm{H}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$

Remember to balance for atoms before adding electrons to balance for charge.

Step 1	Step 2	Step 3
Write the two balanced halfreactions, removing any spectator ions:	Balance electrons	Add the half-reactions, replacing any spectator ions that were removed and/or recombining compounds
$\mathrm{CrO}_{4}^{2-}+8 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$	$\times 2$	$2 \mathrm{CrO}_{4}{ }^{2-}+16 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+8 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$	$\times 3$	$6 \mathrm{Cl}^{-} \rightarrow 3 \mathrm{Cl}_{2}+6 \mathrm{e}^{-}$
added together:		$2 \mathrm{CrO}_{4}{ }^{2-}+16 \mathrm{H}^{+}+6 \mathrm{Cl}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

4 3. Balance the following reactions using either the oxidation number method or the half-reaction method.
a. $\mathrm{NO}+\mathrm{As}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2} \mathrm{O}+\mathrm{HAsO}_{2}$

	initial	final	change	no. atoms	No. \mathbf{e}^{-}	Coefficient	Total \mathbf{e}^{-}				
N	+2	\rightarrow	+1	1	\times	$2\left(\right.$ in $\left.\mathrm{N}_{2} \mathrm{O}\right)$	$=$	2	\times	$\mathbf{3}$	$=$
As	0	\rightarrow	+3	3				3	\times	$\mathbf{2}$	$=$

Answer: $\quad 6 \mathrm{NO}+2 \mathrm{As}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathbf{3} \mathrm{N}_{\mathbf{2}} \mathrm{O}+\mathbf{2} \mathrm{HAsO}_{2}$
b. $\mathrm{Ce}^{4+}+\mathrm{I}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{Ce}^{3+}+\mathrm{IO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$

Step 1	Step 2	Step 3
Write the two balanced half- reactions, removing any spectator ions:	Balance electrons	Add the half-reactions, replacing any spectator ions that were removed and/or recombining compounds
$\mathrm{Ce}^{4+}+1 \mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}$	$\times 6$	$6 \mathrm{Ce}^{4+}+6 \mathrm{e}^{-} \rightarrow 6 \mathrm{Ce}^{3+}$
$I^{-}+6 \mathrm{OH}^{-} \rightarrow \mathrm{IO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-}$		$\mathrm{I}^{-}+6 \mathrm{OH}^{-} \rightarrow \mathrm{IO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-}$
	added together:	$6 \mathrm{Ce}^{4+}+\mathrm{I}^{-}+6 \mathrm{OH}^{-} \rightarrow 6 \mathrm{Ce}^{3+}+\mathrm{IO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}$

