Chemistry 30

Unit 6: Redox Reactions and Electrochemistry

Practice Set 3: Balancing Redox Reactions

1. Balance the following redox reactions using the oxidation number method.
a. $\mathrm{SnCl}_{2}+\mathrm{HgCl}_{2} \rightarrow \mathrm{SnCl}_{4}+\mathrm{HgCl}$

	initial		final	change		Coefficient		Total \mathbf{e}^{--}
Sn	+2	\rightarrow	+4	2	\times	1	$=$	2
Hg	+2	\rightarrow	+1	1	\times	2	$=$	2

Place a " 1 " in front of compounds containing Sn , and a " 2 " in front of compounds with Hg :

$$
\text { Answer: } \quad 1 \mathrm{SnCl}_{2}+\mathbf{2} \mathrm{HgCl}_{2} \rightarrow 1 \mathrm{SnCl}_{4}+2 \mathrm{HgCl}
$$

Double check to make sure all other atoms in the equation are balanced.
b. $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{NO}+\mathrm{S}+\mathrm{H}_{2} \mathrm{O}$

	initial		final	change		Coefficient		Total \mathbf{e}^{-}
N	+5	\rightarrow	+2	3	\times	2	$=$	6
S	-2	\rightarrow	0	2	\times	3	$=$	6

Place a " 2 " in front of compounds containing N , and a " 3 " in front of compounds with S . Then balance for hydrogen and oxygen.

Answer: $\quad \mathbf{2} \mathrm{HNO}_{3}+\mathbf{3} \mathrm{H}_{2} \mathrm{~S} \boldsymbol{\rightarrow} \mathbf{2 N O}+\mathbf{3 S}+\mathbf{4} \mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{SO}_{4}$

	initial		final	change		Coefficient		Total \mathbf{e}^{-}
Cl	+1	\rightarrow	-1	2	\times	4	$=$	8
S	-2	\rightarrow	+6	8	\times	1	$=$	8

Answer:
$4 \mathrm{NaClO}+\mathbf{1} \mathrm{H}_{2} \mathrm{~S} \rightarrow \mathbf{4 ~ N a C l}+\mathbf{1} \mathrm{H}_{2} \mathrm{SO}_{4}$
d. $\mathrm{CdS}+\mathrm{I}_{2}+\mathrm{HCl} \rightarrow \mathrm{CdCl}_{2}+\mathrm{HI}+\mathrm{S}$

Because one of the atoms undergoing oxidation or reduction has a subscript $\left(\mathrm{I}_{2}\right)$ we will account for the number of atoms of each element when preparing our summary chart:

	initial		final	change	no. atoms	No. \mathbf{e}^{-}	Coefficient	Total \mathbf{e}^{-}		
S	-2	\rightarrow	0	2		2	\times	$\mathbf{1}$	$=$	2
I	0	\rightarrow	-1	1	$\times 2\left(\right.$ in $\left.\mathrm{I}_{2}\right)$	$=$	2	\times	$\mathbf{1}$	$=$

Place the balancing coefficients into the equation in front of the elements undergoing oxidation and reduction. For iodine, the 1 will go in front of the diatomic I_{2} because these were the atoms being counted.

$$
1 \mathrm{CdS}+1 \mathrm{I}_{2}+\mathrm{HCl} \rightarrow \mathrm{CdCl}_{2}+\mathrm{HI}+1 \mathrm{~S}
$$

Then balance the rest of the equation. First balance for iodine atoms, then for Cd and H :

Answer:

$$
1 \mathrm{CdS}+1 \mathrm{I}_{2}+\mathbf{2 ~ H C l} \rightarrow \mathbf{1} \mathrm{CdCl}_{2}+\mathbf{2 H I}+\mathbf{1 S}
$$

e. $\mathrm{I}_{2}+\mathrm{HNO}_{3} \rightarrow \mathrm{HIO}_{3}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

	initial		final	change	no. atoms	No. \mathbf{e}^{-}	Coefficient	Total \mathbf{e}^{-}		
I	0	\rightarrow	+5	5	\times	$2\left(\right.$ in $\left.I_{2}\right)$		10	\times	$\mathbf{1}$
N	+5	\rightarrow	+4	1			$=$	1	\times	$\mathbf{1 0}$

Because of the subscript with iodine $\left(\mathrm{I}_{2}\right)$, we multiply the change in oxidation number for iodine by 2 before we determine our coefficient multipliers.

The " 1 " for iodine is placed in front of the diatomic iodine; the " 10 " goes in front of both nitrogens.
Then balance for iodine on both sides of the equation, then for all other atoms.
Answer: $\quad 1 \mathrm{I}_{2}+10 \mathrm{HNO}_{3} \rightarrow \mathbf{2} \mathrm{HIO}_{3}+10 \mathrm{NO}_{2}+\mathbf{4} \mathrm{H}_{2} \mathrm{O}$
f. $\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$

	initial		final	change	no. atoms	No. \mathbf{e}^{-}	Coefficient	Total \mathbf{e}^{-}		
Mn	+7	\rightarrow	+2	5			5	\times	$\mathbf{2}$	$=$
Cl	-1	\rightarrow	0	1	\times	$2\left(\right.$ in $\left.\mathrm{Cl}_{2}\right)$	$=$	2	\times	$\mathbf{5}$

Because of the diatomic chlorine $\left(\mathrm{Cl}_{2}\right)$ we multiply the change in oxidation number for chlorine by 2. We then determine what coefficients are needed to balance for electrons. The " 5 " for chlorine will be placed in front of the diatomic chlorine. Then balance both sides of the equation for chlorine, then for all other atoms.

Answer: $\quad \mathbf{2} \mathrm{MnO}_{4}^{-}+\mathbf{1 6} \mathrm{H}^{+}+10 \mathrm{Cl}^{-} \rightarrow \mathbf{2} \mathrm{Mn}^{2+}+\mathbf{5} \mathrm{Cl}_{2}+\mathbf{8} \mathrm{H}_{2} \mathrm{O}$
2. Balance the following half-reactions for both atoms and electrons by adding the appropriate number of electrons to the correct side of the equation. Also identify each as either an oxidation or reduction.
a. $\mathrm{Pb}^{2+} \rightarrow \mathrm{Pb}$
$\mathrm{Pb}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb} \quad$ reduction
b. $\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{-}$
$\mathrm{Cl}_{2}+\mathbf{2} \mathrm{e}^{-} \rightarrow \mathbf{2} \mathrm{Cl}^{-} \quad$ reduction
c. $\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}^{2+} \quad \mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+} \quad$ reduction
d. $\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}+\mathrm{H}^{+}$
$\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathbf{2} \mathrm{NO}+\mathbf{2} \mathrm{H}^{+}+2 \mathrm{e}^{-}$
oxidation
3. Break each equation into two half-reactions. Identify each half-reaction as oxidation or reduction.
a. $\mathrm{Cu}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{H}_{2}$

$$
\begin{array}{ll}
\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} & \text {oxidation } \\
2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} & \text { reduction }
\end{array}
$$

b. $2 \mathrm{Al}+3 \mathrm{~S} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$

$$
\begin{array}{ll}
2 \mathrm{AI} \rightarrow 2 \mathrm{Al}^{+3}+6 \mathrm{e}^{-} & \text {oxidation } \\
3 \mathrm{~S}+6 \mathrm{e}^{-} \rightarrow 3 \mathrm{~S}^{2-} & \text { reduction }
\end{array}
$$

4. Balance the following equations using the half-reaction method.
a. $\mathrm{Na}+\mathrm{Br}_{2} \rightarrow \mathrm{NaBr}$

Step 1	Step 2	Step 3
Write the two balanced half- reactions, removing any spectator ions:	Balance for electrons	Add the half-reactions, replacing any spectator ions that were removed and/or recombining compounds
$\mathrm{Na} \rightarrow \mathrm{Na}^{+}+\mathrm{e}^{-}$	multiply by 2	$2 \mathrm{Na} \rightarrow 2 \mathrm{Na}^{+}+2 \mathrm{e}^{-}$
$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}$		$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}$
	added together:	$2 \mathrm{Na}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{Na}^{+}+2 \mathrm{Br}^{-}$
	reform compound:	$2 \mathrm{Na}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NaBr}$

b. $\mathrm{Zn}+\mathrm{S} \rightarrow \mathrm{ZnS}$

Step 1	Step 2	Step 3
Write the two balanced half- reactions, removing any spectator ions:	Balance for electrons	Add the half-reactions, replacing any spectator ions that were removed and/or recombining compounds
$\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	$\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$	
$\mathrm{S}+2 \mathrm{e}^{-} \rightarrow \mathrm{S}^{2-}$	$\mathrm{S}+2 \mathrm{e}^{-} \rightarrow \mathrm{S}^{2-}$	
	added together:	$\mathrm{Zn}+\mathrm{S} \rightarrow \mathrm{Zn}^{2+}+\mathrm{S}^{2-}$
	reform compound:	$\mathrm{Zn}+\mathrm{S} \rightarrow \mathrm{ZnS}$

c. $\mathrm{Ag}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Ag}^{+}+\mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}$

For each half-reaction, remember to balance for atoms first, then add electrons to balance for charge.

Step 1	Step 2	Step 3
Write the two balanced half-reactions, removing any spectator ions:	Balance electrons	Add the half-reactions, replacing any spectator ions that were removed and/or recombining compounds
$\mathrm{Ag} \rightarrow \mathrm{Ag}^{+}+\mathrm{e}^{-}$	$\times 6$	$6 \mathrm{Ag} \rightarrow 6 \mathrm{Ag}^{+}+6 \mathrm{e}^{-}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$		$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
	added together:	$6 \mathrm{Ag}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow 6 \mathrm{Ag}^{+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$

