Unit 6: Redox Reactions and Electrochemistry

Practice Set 4: Electrochemical Cells

For questions 1 to 3, two half-cells are connected under standard conditions to make an electrochemical cell. For each:

- a. write the equation for each half-reaction that will occur
- b. label each half-reaction as oxidation or reduction
- c. calculate the voltage of the electrochemical cell
- d. the net overall **balanced** redox equation.
- e. diagram the cell, clearly indicating the following
 - the electrodes in appropriate electrolytic solutions
 - label each electrode as anode or cathode
 - label each electrode as positive post or negative post
 - diagram the flow of electrons through the external circuit
 - a salt bridge with appropriate electrolytic solution
 - flow of ions from the salt bridge to the two half-cells

STANDARD REDUCTION POTENTIALS FOR HALF-REACTIONS

Ionic concentrations are a 1 M in water at 25°C

Half-reaction	E° (Volts)
$Au^{3+} + 3e^{-} \rightarrow Au_{(s)}$	+1.50
$Cu^+ + e^- \rightarrow Cu_{(s)}$	
$Pb^{2+} + 2e^{-} \rightarrow Pb_{(s)} \dots$	
$Fe^{2+} + 2e^{-} \rightarrow Fe_{(s)}$	
$Cr^{3+} + 3e^{-} \rightarrow Cr_{(s)}$	
$Al^{3+} + 3e^{-} \rightarrow Al_{(s)}^{(s)}$	
$Mg^{2+} + 2e^{-} \rightarrow Mg_{(s)}$	
$Rb^+ + e^- \rightarrow Rb_{(s)}$	
(4)	

- 1. iron-iron(II) ion (Fe|Fe²⁺) and lead-lead(II) ion (Pb|Pb²⁺)
- 2. chromium-chromium(III) ion (Cr|Cr³⁺) and rubidium-rubidium ion (Rb|Rb⁺)
- 3. copper-copper(I) ion (Cu|Cu⁺) and aluminum-aluminum ion (Al|Al³⁺)
- 4. a. An electrochemical cell is created using gold and magnesium half-cells. Determine which half-cell will undergo oxidation and which will undergo reduction, identify anode and cathode, and calculate the voltage for the cell. You do not need to diagram the cell.
 - b. If the mass of the magnesium electrode changes by 5.0 g, what will be the change in mass of the gold electrode, and will its mass increase or decrease?