FORMULAS

Thermochemistry

Temperature Conversion	${ }^{\circ} \mathrm{C}=\mathrm{K}-273 \quad \mathrm{~K}={ }^{\circ} \mathrm{C}+273$
Heat transfer	$\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
Hess's Law (Enthalpy)	$\Delta \mathrm{H}=\Sigma \Delta \mathrm{H}_{\text {products }}-\Sigma \Delta \mathrm{H}_{\text {reactants }}$
Hess's Law (Entropy)	$\Delta \mathrm{S}=\Sigma \mathrm{S}_{\text {products }}-\Sigma \mathrm{S}_{\text {reactants }}$
Hess's Law (Gibbs Free Energy)	$\Delta \mathrm{G}=\Sigma \Delta \mathrm{G}^{\circ}{ }_{\text {products }}-\Sigma \Delta \mathrm{G}^{\circ}{ }_{\text {reactants }}$
Gibbs Free Energy	$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

Chemical Equilibrium

Equilibrium Constant, K_{eq}
$\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}$

$$
K_{e q}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
$$

Solutions

Molarity, M
parts per million, ppm
dilutions

Solubility product constant, $\mathrm{K}_{\text {sp }}$

$$
\mathrm{A}_{\mathrm{b}} \mathrm{X}_{\mathrm{y}(\mathrm{~s})} \rightleftharpoons \mathrm{bA}_{(\mathrm{aq})}^{+}+\mathrm{yX}_{(\mathrm{aq})}^{-}
$$

$\mathrm{M}=\frac{\text { moles solute }}{\text { litres solution }}$
$\mathrm{ppm}=\frac{\text { mass solute }}{\text { mass solution }} \times 10^{6}$
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$
$\mathrm{Keq}=\left[\mathrm{A}^{+}\right]^{\mathrm{b}}\left[\mathrm{X}^{-}\right]^{\mathrm{y}}$

Acids and Bases

K_{a} and K_{b}

$$
\mathrm{H}_{\mathrm{b}} \mathrm{X}_{\mathrm{y}(\mathrm{~s})} \rightleftharpoons \mathrm{bH}_{(\mathrm{aq})}^{+}+\mathrm{yX}_{(\mathrm{aq})}^{-} \quad \mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{\mathrm{b}}\left[\mathrm{X}^{-}\right]^{\mathrm{y}}
$$

K
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}$
$\mathrm{pH}, \mathrm{pOH}$
pH and pOH , and $\left[\mathrm{OH}^{-}\right]$
$\mathrm{pH}+\mathrm{pOH}=14 \quad\left[\mathrm{OH}^{-}\right]=\frac{1 \times 10^{-14}}{\left[\mathrm{H}^{+}\right]}$
Titration (for 1:1 Acid:Base ratio)
$M_{A} V_{A}=M_{B} V_{B}$

